
Revision 5.23

2

©2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
Animatics Corp. All rights reserved

Animatics SmartMotor™ Class 5 User's Guide.

This manual, as well as the software described in it, is furnished under
license and may be used or copied only in accordance with the terms of
such license. The content of this manual is furnished for informational
use only, is subject to change without notice and should not be construed
as a commitment by Animatics Corporation. Animatics Corporation
assumes no responsibility or liability for any errors or inaccuracies that
may appear herein.

Animatics and the Animatics logo, SmartMotor and the SmartMotor logo,
Combitronic and the Combitronic logo are all trademarks of Animatics
Corporation.

Please let us know if you fi nd any errors or omissions in this manual so
that we can improve it for future readers. Such notifi cations should be
sent by e-mail with the words "User's Guide" in the subject line sent to:
techwriter@animatics.com. Thank you in advance for your contribution.

Contact Us:

Animatics Corporation
3200 Patrick Henry Drive
Santa Clara, CA 95054
USA
Tel: 1 (408) 748-8721
Fax: 1 (408) 748-8725
www.animatics.com

3

SmartMotor Proposition 7

SmartMotor Theory of Operation 9
 Motion Control Functions 9

 System Control Functions 9

 Communication Functions 10

 I/O Functions 10

Design Tricks to Leverage SmartMotor Value 13

Quick Start 15
 Software Installation 16

 A Quick Look at the SmartMotor Interface 16

 Learning the SmartMotor Interface (SMI) 16

 Monitoring Motor Status 16

 Initiating Motion 18

 Writing a User Program 18

 Transmitting the Program to a SmartMotor 18

Basic Motion 21
 Basic Motion Parameters 21

 Commutation Modes 27

 Synchronized Motion using TM 28

Program Flow 33
 Interrupt Programming 39

 Error Handling 41

Variables and Math 43
 Timer Status Bits 49

 User Status Bits 50

 Multiple Trajectory Support Status Bits 50

 Cam Status Bits 51

 Interpolation Status Bits 51

Table of Contents

4

 Motion Mode Status 52

Functions of I/O Ports 53
 Discrete Input Commands 53

 Discrete Output Commands 53

 Output Condition 54

 Output Fault Status Reports 24Volt I/O only 54

 Setting an I/O Point to be General Use Input Configuration 54

 Analog Functions of I/O Ports 55

 Read 5V Push-Pull I/O 55

 24Volt I/O Sourcing 55

 Special Functions of I/O Ports 56

 I/O ports 0 and 1 - External Encoder Function Commands 56

 I/O Ports 2 and 3 - Travel Limit Inputs 56

 I/O Ports 4 and 5 - Communications 56

 I/O Port 6 - Go Command, Capture Input 57

 I/O Brake Output Commands 57

 I/O Connection Examples 57

 I2C I/O Expansion 57

 SmartMotor Connector Pinouts 58

Communications 61
 Connecting to a Host 61

 Daisy Chaining Multiple SmartMotors Over RS-232 62

 Communicating Over RS-485 64

 Getting Data from RS-232/RS-485 Port Using Data Mode 66

 CAN Communications 69

 TM Communications 70

 CANopen - Can Bus Protocol 72

 DeviceNet - Can Bus Protocol 72

 I2C Communications 72

Table of Contents

Continued from preceding page

5

Continued from preceding page

PID Control 75
 Tuning the PID Control 76

 Current Limit Control 78

Advanced Motion 79
 Follow Mode (Electronic Gearing) 79

 Cam Mode 81

 Cam Mode Commands 82

 Multiple Trajectories 85

 Modulo Position 87

 Position Error Limits 88

 Hardware Limits 88

 Software Limits 88

 Fault Handling 88

SMI Advanced Features 91
 SMI Projects 91

 Terminal Window 91

 Configuration Window 92

 Program Editor 92

 Information Window 93

 Serial Data Analyzer 93

 Motor View 94

 Monitor Window 95

 Chart View 95

 Macros 95

 Tuner 96

 SMI Options 98

 SMI Help 98

 SMI Trace Functions 99

Table of Contents

6

Appendix A - The ASCII Character Set 105

Appendix B - Binary Data 105

Appendix C - Commands 109

Appendix D - Data Variables Memory Map 125

Appendix E - Example Programs 127
 Moving Back and Forth 127
 Moving Back and Forth with Watch 127
 Homing Against a Hard Stop 128
 Homing to the Index 128
 Analog Velocity 129
 Long Term Variable Storage 129
 Look for Errors and Print Them 130
 Changing Speed Upon Digital Input 130
 Pulse Output Upon a Given Position 131
 Stop Motion If Voltage Drops 131

Appendix F - Status Words 133
 Status Word: 0 133
 Status Word: 1 134
 Status Word: 2 135
 Status Word: 3 136
 Status Word: 4 137
 Status Word: 5 138
 Status Word: 6 139
 Status Word: 7 140
 Status Word: 8 141
 Status Word: 12 142
 Status Word: 13 142
 Status Word: 16 143
 Status Word: 17 144

Table of Contents

Continued from preceding page

7

SmartMotor Proposition

What makes the Animatics SmartMotor by far the most powerful Integrated
Motor in the industry is its unique ability to control an entire machine. The com-
bination of programmability, networking, I/O and servo performance is unparal-
leled, though exactly what you should expect from the Pioneer of Integration.

While priced similarly to other Integrated Servos, the SmartMotor brings true
and additional savings to the machine builder by eradicating other expen-
sive and complicated elements in the machine, including PLCs, Sensors, I/O
Blocks, Cabinets, etc.

Competitive products deliver only compactness. The SmartMotor is more than
a product. It is the natural by-product of a design philosophy:

1) Reduce development time - shorten Time-To-Market
2) Lower machine production cost
3) Simplify machine, machine build, and support

When you come to believe the above three directives are truly born out in the
Animatics SmartMotor product line, you will find that an accurate calculation of
the benefit of choosing the SmartMotor does not arise from the comparative
acquisition costs. The greatest benefit of using the SmartMotor is that it lets
you trump your competition by getting to market weeks or potentially months
faster.

8

9

SmartMotor Theory of Operation

Optional
SmartMotor™ cable
(CBLSM1-10)

Optional PS24V8A
or PS48V6A power
supply

The SmartMotor™ is an entire servo control system built inside of a servo motor.
It includes a controller, an amplifier and an encoder. All that is required for it
to operate is power, and either an internal program, or serial commands from
outside (or both). To make the SmartMotor move, the program or serial host
must state a target position, a maximum velocity at which to travel to that tar-
get, and a maximum acceleration. Once these three parameters are set, and
the two limit inputs are properly grounded or deactivated, a "Go" command will
start the motion profile.

 Motion Control Functions

The controller portion of the SmartMotor performs many functions. When the
motor is set to "servo" (hold its position), its windings are charged with current
only so much as is necessary to keep the programmed position, either at rest,
or over time during motion. This power level is controlled by the "PID filter" and
updated 8,000 times per second by default and as fast as 16,000 for maximum
performance.

Trajectory generation is also done by the controller, to exacting precision.
Position, velocity and acceleration can be changed at any time, even during an
existing move. To reach a target position, the SmartMotor will accelerate at the
programmed acceleration until it reaches the programmed maximum velocity,
whereupon it will travel at that velocity. When it approaches the target position,
it will decelerate at the last programmed deceleration rate such that the moment
it comes to rest, it will be at the programmed target position. Profiles can be
programmed that are all acceleration and deceleration with no slew. The PID
control will direct the amplifier to give the motor as much current as required to
stay on the trajectory, based on loading. If there is not enough power to move
the load and stay on trajectory, there will be a position error and the motor will
stop, unless programmed otherwise. The amount of power the SmartMotor
requires is entirely dependent upon the load it must move and the motion pro-
file.

In addition to the ability to create trajectories, the SmartMotor can position in
ratio to incoming encoder or step & direction signals, it can interpolate its posi-
tion between points in a CAM table, and it can perform complex contours when
coordinated by a host computer with custom software, or one of Animatics’
standard software programs, including SMNC, Animatics’ G-Code based CNC
motion control software.

PID control and trajectory generation (or following) are the controller's top prior-
ity. Regardless of what else may be processing or happening, these functions
will be performed at the full and precise PID rate.

 System Control Functions

The SmartMotor's controller can also be programmed in a language similar to
BASIC. This capability creates infinite flexibility and in many applications elimi-
nates the need for a PLC (Programmable Logic Controller).

SmartMotors have numerous I/O incorporating multiple functions. Clever pro-
grams can define interactions between the I/O, the SmartMotor's shaft motion

10

and also other peripherals like sensors, light curtains, bar code readers, etc.,
even other SmartMotors.

 Communication Functions

The SmartMotor comes standard with one RS-232 and one RS-485 communi-
cation port. These ports can be used to connect SmartMotors together, and/
or to a host computer or PLC. In addition to these networks, SmartMotors
have the option of being available with a number of industry standard control
networks such as CANopen, DeviceNet, Profibus, USB, Ethernet, and others.
These other networks can be used for communication between SmartMotors,
between a group of SmartMotors and a host, and in many instances allow a
SmartMotor to master out to network based I/O expansion modules.

Each industrial network imposes standards for operation and the SmartMotors
are designed to conform to those particular standards where industrial field-
buses are used.

For communication over the SmartMotor's native RS-232 or RS-485 ports,
several hundred unique commands are interpreted from incoming ASCII text
at a default 9,600 baud. The baud rate is configurable within a user program
on SMI. There is no hardware or software handshaking. Commands are sim-
ply buffered and interpreted as they come in. Requests can be made of the
SmartMotor for data or system status as needed. The commands used in an
internal program are the same as those interpreted over the serial channels,
except that the program has additional commands for decision making and
program flow.

Commands arriving over the serial channels have priority over internal program
commands. As a command comes in over the serial channel, it is serviced
"next" and then execution is returned to the SmartMotor's program, if it exists
and is running. If a request is made for data, such as a request for position:
"RPA", for example, the current position is output in the form of ASCII text to
the main channel, regardless of whether the request was made over the main
channel serial network, or by internal program. If a request for data arrives
from the secondary serial channel, or other serial network, however, the data
is reported to that channel. The SmartMotor uses both spaces and carriage
returns as delimiters.

Like many industrial controls, a string of more than 100 SmartMotors can be
connected as CANopen slaves to an external master when equipped with an
optional CAN connector. The SmartMotor is the only integrated motor in the
world, however, to use Animatics’ © technology to seamlessly con-
nect all SmartMotors in a chain, allowing any node to be a Master and a Slave
to every other. These additional communications can coexist with mastered
CANopen or DeviceNet communications over the same bus, as well as com-
munications over the main RS-232 and RS-485 ports.

I /O Functions

The SmartMotor's I/O (Input/Output) ports are extremely flexible and provide
a variety of digital and analog input and output capability. Each I/O point has

SmartMotor Theory of Operation

Closeup of optional
CAN connector

11

SmartMotor Theory of Operation

Closeup of optional
isolated 24V I/O
connector

a corresponding pre-assigned variable name within the programming environ-
ment and can be read from, or written to, by placing it on the right or left side
of an equation, respectively. There are 7 standard I/O and they are 0-5V and
are un-isolated.

The SmartMotor has the option of also being equipped with an additional 10
points of isolated 24V I/O. This I/O is sourcing, universal discrete input or out-
put, and 10-bit analog input.

The analog input function is always available with SmartMotor I/O, no matter
how the I/O point is configured.

12

13

Design Tricks to Leverage SmartMotor Value

Most newcomers to Integrated Motors and even most manufacturers of
Integrated Motors believe the benefits to be limited to general compactness
and simplicity.

For Animatics, the thought to move the control and drive electronics into the
servomotors themselves arose from an exercise. The exercise was to, for a
moment, look away from the upfront acquisition costs of automation compo-
nents and instead look at the higher level costs of developing, manufacturing,
selling and supporting automated equipment. Then, from that perspective and
with a clean sheet of paper, conceive of an automation product family that
would be designed to fundamentally address these higher level, and higher
value, business issues.

The result was the conclusion that by reshaping the automation components,
how they come together, and what they do, we could decisively mine several
times the actual product costs directly out of the machine builder's overall ex-
penses.

Simply buying SmartMotors instead of old-style control systems, however,
only gets the machine builder half-way through the total potential benefits.
Completely capturing all of the savings and opportunity SmartMotors can bring
arises from adopting the design vision that gave rise to the SmartMotor, de-
scribed as follows:

1) Reduce development time - shorten Time-To-Market

The old way of designing automated equipment is to start with a large
cabinet, specify and lay out a large array of components within the cabi-
net and then design all of the requisite wiring. Then add rows of DIN-
Rail mount termination points and data or signal converters and the end
result is a monumental and time-consuming design and procurement
project.

By contrast, a SmartMotor-based machine involves a simple network of
motors deployed with predominantly off-the-shelf cables. With
Animatics' technology linking the SmartMotors together,
sensors can be cabled directly to the nearest SmartMotors, unless
micro-second response times with motion are required, where the sen-
sors would best be wired directly to the related motor.

Analog AND digital sensors can be read, and air valves and indicator
lights can be directly controlled by SmartMotors without channeling all
signals through a cabinet.

Historically, equipment with physical motion is deployed with a PLC pre-
siding over I/O and motion. Motion is accomplished through separate
controls and amplifiers, or "smart" amplifiers. Where I/O and motion are
tightly coupled, days and even weeks are spent getting the PLC to com-
municate with the motion axes, and/or getting the motion axes to com-
municate with each other. The unified programming environment the
SmartMotor technology delivers eliminates this extended development
time, along with the throughput compromises that typically come with it.

14

Shortened development time accelerates revenue generation and beats
others to market.

2) Lower machine production cost

Fewer components simply cost less. Machines automated with
SmartMotors often enjoy smaller footprints and are lighter in weight, re-
ducing other material costs, crating and shipping costs.

3) Simplify machine, machine build, and support

Can't debug without a cabinet full of screw terminals? Untrue, since the
SmartMotor can read the analog value of every I/O point, regardless
of how that I/O point is configured. The software itself can check, au-
tomatically and in real time, every point for short circuits, open circuits
and failed outputs. Every SmartMotor knows its voltage, its current, and
its temperature.

In the best of situations, the machine builder can find one model of
SmartMotor that can work in most or all positions and specially label all
standard and custom cables.

Debugging is no longer done by a factory expert flown in after delay
and great expense to open the cabinet while the machine is down.
Typically, the machine user will call, and the machine itself made it clear
that there is a problem with a certain sensor, or a certain cable, or a
certain motor. Any of these components can be replaced by the cus-
tomer themselves, the downtime quickly eliminated, and the debugging
transplanted back to the original factory, to be conducted at leisure.

Spares on hand can be used to eliminate downtime. This is facilitated
by each motor having exactly the same program, with simply different
portions of the same program executing in each axis. Ideally, the pro-
gram would set the SmartMotor address and determine what portion of
the program to execute, by looking at an analog input, or a set of digital
inputs that are unique at each motor by virtue of wiring. One spare can
be placed in any position and know exactly what to do.

Many Animatics customers have reported "never" having to directly
service a machine in the field for a motion-related problem since de-
ploying the SmartMotor. One factory paid field service call can destroy
the profit on the sale of a machine, and prolonged downtime is a killer.

By contrast, an empowered user experiencing near zero downtime can
be a valued customer for life.

Follow these design principles and you will likely find that the
SmartMotors are actually paying you.

15

In order to make the SmartMotor™ run, the following will be needed at a
minimum:

1. A SmartMotor

2. A computer running MS Windows

3. A DC power supply for the SmartMotor

4. A data cable to connect the SmartMotor to the computer’s serial port
 or serial adapter.

5. Host level SMI software to communicate with the SmartMotor

The fi rst time user of the SM1700 through SM3400 series motors should
purchase the Animatics SMDEVPACK-D. It includes the CBLSM1-10 data and
power cable, the SMI software, the manual and a connector kit.

The CBLSM1-10 cable (right) is also available separately.

Animatics also has the following unregulated linear DC power supplies available
for the Class 5 SmartMotor: PS24VAG-110 (24 Volt, 8 Amp) and PS42V6A
G-110 (42 Volt, 6 Amp). 48V power supplies and protective shunts are also
available. For any particular SmartMotor, more torque and speed is available
with higher voltage.

When relying on torque/speed curves, pay close attention to the voltage on which
they are based. Also, special care must be taken when near the upper voltage
limit or in vertical applications that can back-drive the SmartMotor. Gravity
infl uenced applications can turn the SmartMotor into a generator and back-drive
the power supply voltage above the safe limit for the SmartMotor. Many vertical
applications require a shunt to protect the SmartMotor from damage. Larger
open frame power supplies are also available and may be more suitable for
cabinet mounting.

Optional
SmartMotor™
cable (CBLSM1-10)

Optional PS24V8A
or PS48V6A power
supply

Many vertical
applications require
a shunt to protect
the SmartMotor
from damage

Quick Start

CAUTION

PC or Labtop
Computer with
MS Windows

Computer side of CBLSM1-10
Cable Assembly Connected to

Serial port (COM1 or 2)

SmartMotor
(SM23205D shown)

Power supply side
of CBLSM1-10 Cable

Assembly

DC Power Supply
PS24V8AG-110 or

PS48V6AG-110

Connecting
an SM23205D
SmartMotor using
a CBLSM1-10
cable assembly and
PS24V8A power
supply

16

 Software Installation

Follow standard procedures for software installation using the Animatics SMI
CD-ROM or fi les downloaded from Animatics web site at www.animatics.com.
After the software is installed, be sure to restart your computer before running
the SMI program. With the SMI Software loaded and your SmartMotor con-
nected as shown on the next page, you are ready to start making motion. Turn
the SmartMotor’s power on and start the SMI Program.

A Quick Look at the SmartMotor Interface

The SmartMotor Interface (SMI) software connects a SmartMotor or a series
of SmartMotors to a computer or workstation and gives a user the capability to
control and monitor the status of the motors directly from a standard computer.
SMI also allows the user to write programs and download them into the Smart-
Motor’s long-term memory.

If you are a fi rst-time user, a simpler interface is available to help you get started.
From the SMI main screen, go to the “Tools” menu and select “SmartMotor Play-
ground”.

Now, click in the “Detect Motors” button in the upper-right portion of the screen.
If your SmartMotor is not properly detected, use the utility to the upper left to
select the more appropriate COM port. If you still are unsuccessful, it is likely
that your computer is not confi gured properly for RS-232 communications. This
problem should be corrected, or another computer substituted.

Within the SmartMotor Playground, you can experiment with the many different
modes of operation. You might start by moving the position slider bar to the right
and watching the motor follow. By selecting the “Terminal” tab, you can try dif-
ferent commands found later in this guide.

While the SmartMotor Playground is useful in testing the motor and learning
about its capabilities, to develop an actual application you will need to click on
the “Close” button at the bottom and launch the SMI development software.

Learning the SmartMotor Interface (SMI)

The SMI main screen shows a menu section across the top, a Configuration
window on the left, a Terminal window in the center (colored blue) and an Infor-
mation window on the bottom.

With your motor connected and on, click on the button located mid-way on
the toolbar. If everything is connected and working properly, the motor should
be identified in the Information window. If the motor is not found, check your
connections and make sure the serial port on your PC is operational.

Monitoring Motor Status

To see the status of the connected motor, go to the “Tools” menu, select “Motor
View” and double click on the available motor. Once the Motor View window
appears, press the “Poll” button. The SmartMotor™ requires limits to be con-

Every SmartMotor
has an ASCII
interpreter built in. It
is not necessary to
use SMI to operate
a SmartMotor.

The SmartMotor
Playground
allows the user
to immediately
begin making
motion without
having to know
anything about the
programming.

Quick Start

17

You may need to
check the "Disable
Hardware Limits"
boxes and clear the
error fl ags to get
motion. DO NOT
disable limits if
this action creates
a hazard.

Quick Start

CAUTION

nected or disabled before the motor will operate. If you see limit errors and
you want to move the motor without wiring the limits, you can redefine the Limit
Inputs as General Inputs. Then reset the errors by issuing the following com-
mands (in bold) in the Terminal window (be sure to use all caps and don’t enter
the comments to the right).

EIGN(2) 'Disable Left Limit
EIGN(3) 'Disable Right Limit
ZS 'Reset errors

Normally, when the motor is attached to an application that relies on proper
limit operation, you would not make a habit of disabling them. If your motors
are connected to an application and capable of causing damage or injury, it
would be essential to properly install the limits before experimenting.

Motor View gives
you a window into
the status of a
SmartMotor

Limit Inputs must be
either tied low, or
disabled to achieve
motion.

18

Initiating Motion

To get the motor to make a trajectory, enter the following into the Terminal
window (the dark blue window in the middle of the SMI screen).

ADT=100 'Set Target Acceleration/Deceleration
VT=1000000 'Set Target Velocity
PT=300000 'Set Target Position
G 'Go, Starts the move

After the final “G” command has been entered, the SmartMotor™ will
accelerate up to speed, slow and then decelerate to a stop at the absolute
target position. The progress can be seen in the Motor View window.

Writing a User Program
In addition to taking commands over the serial interface, the SmartMotor can
run programs. To begin writing a program, press the button on the left end
of the toolbar and the SMI program editing window will open. This window is
where SmartMotor programs are entered and edited.

Enter the following program in the editing window. It’s only necessary to enter
the boldface text. If you have no limits connected, you may need to add the
Limit redefinition code used in the previous exercise to the top of the program.
The text preceded by a single quote is a comment and is for information only.
Comments and other text to the right of the single quotation mark do not get
sent to the motor. Pay close attention to spaces and capitalization. The code
is case sensitive and a space is a programming element:

EIGN(2) 'Disable Left Limit
EIGN(3) 'Disable Right Limit
ZS 'Reset errors
ADT=100 'Set Target Acceleration
VT=100000 'Set Target Velocity
PT=300000 'Set Target Position
G 'Go, Starts the move
TWAIT 'Wait for move to complete
PT=0 'Set buffered move back to home
G 'Start motion
END 'End program

After the program has been entered, select “File” from the menu bar and “Save
As” . . . from the drop down menu. In the Save File As window, give the new
program a name such as “Test.sms” and click on the “Save” button.

Transmitting the Program to a SmartMotor
Before transmitting the program, press the “Stop” button in the Motor View
window to stop the polling. To check the program and transmit it to the
SmartMotor, click on the button located on the tool bar. A small window will
ask to which motor you want to download the program. Simply select the only
motor presented. SMI compiles the program during this step as well, so errors

The larger
SmartMotors
can shake and
move suddenly
and should be
restrained for
safety.

Quick Start

Acceleration,
Velocity and
Position fully
describe a
trapezoidal motion
profi le

CAUTION

19

Quick Start

may be found in the file. If errors are found, make the necessary corrections
and try again.

Finally, you will be presented with options relating to running the program.
Simply select “Run”. If the motor makes only one move, that is probably
because it was already at position 300,000. Press the button on the toolbar
and the motor should make both moves.

Since the program ends before the return move is finished, you can try running
the program during a return move and learn a bit about how programs and
motion work within the SmartMotor.

To better see the motion the new program is producing, press the “Poll” button
in the Motor View window and run the program.

With the program now downloaded into the SmartMotor, it is important to note
that it will remain until replaced. This program will execute every time power
is applied to the motor. To get the program to operate continuously, you will
need to write a “loop”, described later on.

A program cannot be “erased”; it can only be replaced. To effectively replace
a program with nothing, download a program with only one command: END.

Looking at the position error and feeling the
motor shaft will determine if the motor requires
additional tuning. For most applications these
parameters will suffice, but if still greater pre-
cision is required, there is a section on tuning
the PID filter later in this manual. Also, the
“Tools” menu has a tuning utility that can be
of further use. Whether you accept the pre-

ceding values or you come up with different ones on your own, you should
consider putting the preceding commands at the top of your program, with the
F command to put them to work. Alternatively, if you are operating a system
with no programs in the motors, be sure to send the commands promptly after
power-up or reset.

Many are surprised at the vast array of different parameters the SmartMotor
finds stable. The SmartMotor is so much more forgiving than a traditional con-
trol because of its all-digital design. While traditional controls also boast very
fast PID rates, the conventional analog input servo amplifier has several calcu-
lations worth of delay in the analog signaling, making them difficult to tune. By
virtue of it’s all-inclusive design, the SmartMotor requires no analog circuitry or
associated noise immunity circuitry, and so the amplifier portion conveys all of
the responsiveness the controller can deliver.

Tuning the Motor
The SmartMotor
shows more
than adequate
performance with
the same tuning
parameters. This
is largely due to the
all-digital design.

Refer to the section
on the PID fi lter for
more information on
tuning.

SMI transmits the
compiled version of
the program to the
SmartMotor.

20

21

All SmartMotor™ commands are grouped by function with the following
notations:

Numerical integer value, constrained by command, e.g. 0,1,..22.
frm Formula or number. e.g. 123 or a=1 or a=(2*3)-1.
exp Simple expression or number. E.g. a+3 or al[1] or 5.
W Option for addressing I/O 16 Bit Status Words.
msk Is the mask value of which bits are to be affected when working with

Integers can typically be passed into a command as an exp. Mainly for
I/O and Status Word bit manipulations. See the Appendix for better
understanding Binary Data.

Enter the commands below in the Terminal window and the SmartMotor will
move:

EIGN(2) 'Disable left limit
EIGN(3) 'Disable right limit
ZS 'Reset errors
ADT=100 'Set target acceleration
VT=100000 'Set target velocity
PT=300000 'Set target position
G 'Go, starts the move

On power-up the motor defaults to position mode. Once Target Acceleration-
Deceleration (ADT) and Target Velocity (VT) are set, simply issue new Target
Position (PT) commands, followed by a Go (G) command to execute moves to
new absolute locations. The motor does not instantly go to the programmed
position, but follows a trajectory to get there. The trajectory is bound by the
maximum Target Velocity and Target Acceleration parameters. The result is
a trapezoidal velocity profile, or a triangular profile if the maximum velocity is
never met.

Position, Velocity, and Acceleration can be changed at any time during or
between moves. The new parameters will only apply when a new G command
is sent.

Basic Motion Parameters

ADT=frm Set Target Acceleration-Deceleration

Target Acceleration-Deceleration must be a positive integer within the range
of 0 to 2,147,483,647. The default is zero, so a non-zero number must be
entered to get motion. A typical value is 100. This command sets accelera-
tion and deceleration of the motion profile to the value specified. This value
can be changed at any time. The value set does not take effect until the
next G command is executed. Native acceleration units are (counts/sample/
sample)*65536 and the default sample period is 8.0 kHz.

AT=frm Set Target Acceleration Only
DT=frm Set Target Deceleration Only

 Basic Motion

A complete move
requires the user
to set a position,
a velocity and
an acceleration,
followed by a "Go",
or G command.

The AT, and DT commands allow for setting different values for the
acceleration and deceleration of the motion profile, respectively. The stan-
dard practice should be to use the ADT command instead unless sepa-
rate values are needed. There is an override that will set DT automati-
cally to AT if the motor is powered up and only AT is set, but this should
be avoided by using the ADT command if DT is not going to be set.

To convert acceleration in revolutions per second^2 to units of ADT, AT, or DT,
follow this formula:

ADT = Acceleration * ((enc. counts per rev.)/(sample rate^2)) * 65536

If the motor has a 4000 count encoder (sizes 17 and 23), multiply the desired
acceleration, in rev/sec2, by 4.096 to arrive at the number to set ADT to. With
an 8000 count encoder (size 34) the multiplier is 8.192. These factors assume
a PID rate of 8.0 kHz, which is the default.

Note that ADT, AT, and DT allow even numbers only. When odd numbers are
used, they will be rounded up. The default values are zero.

VT=frm Set Target Velocity

The VT command specifies a target velocity (specifies speed and direction) for
velocity moves, or a slew speed for position moves. The value must be in the
range -2,147,483,647 to 2,147,483,647. Note that in position moves, this value
is the unsigned speed of the move and does not imply direction. The value
set by the VT command only governs the calculated trajectory of MP and MV
modes (position and velocity). In either of these modes, the PID compensa-
tor may need to ‘catch up’ if the actual position has fallen behind the trajectory
position. In this case, the actual speed will exceed this target speed. The value
defaults to zero so it must be set before any motion can take place. The new
value does not take effect until the next G command is issued.

To convert velocity in revolutions per second to units of VT, follow this formula:

VT = Velocity * ((enc. counts per rev.)/(sample rate)) * 65536

If the motor has a 4000 count encoder (sizes 17 and 23), multiply the desired
velocity in rev/sec by 32768 to arrive at the number to set VT to. With an 8000
count encoder (size 34), the multiplier is 65536. These factors assume a PID
rate of 8.0 kHz, which is the default.

PT=frm Set Target Position (Absolute)

The PT command sets an absolute end position to move to when the motor is
in Position Mode. The units are encoder counts and can be positive or negative
in the range -2,147,483,648 to +2,147,483,647. It is not advisable to attempt
to use absolute moves that would cross the rollover point of the most positive
and most negative value. Also, absolute moves should not attempt to specify
a move with a relative distance with that is more than 2,147,483,647. The end
position can be set or changed at any time during or at the end of previous
moves. SmartMotor™ sizes 17 and 23 resolve 4000 increments per revolution,
while SmartMotor™ size 34 resolves 8000 increments per revolution.

Basic Motion

22

If any errors exist,
they must be
cleared before the
G command will
work. All errors
can be cleared with
the ZS command.

The following program illustrates how variables can be used to set motion val-
ues to real-world units and have the working values scaled for motor units for
a size 17 or 23 SmartMotor.

a=100 'Acceleration in rev/sec*sec
v=1 'Velocity in rev/sec
p=100 'Position in revs
GOSUB(10) 'Initiate motion
END 'End program
C10 'Motion routine
 ADT=a*4.096 'Set Target Acceleration
 VT=v*32768 'Set Target Velocity
 PT=p*4000 'Set Target Position
 G 'Start move
RETURN 'Return to call

PRT=frm Set Relative Target Position

The PRT command allows a relative distance move to be specified when the
motor is in position mode. The number following is encoder counts to travel
in the range -2,147,483,648 to +2,147,483,647. The relative distance will be
added to the current trajectory position and not the actual position, either during
or after a move. If a previous move is in still progress, then the current trajec-
tory position will be added to at the point in time when G is commanded. Make
sure a move has finished before commanding G again if the total distance trav-
eled needs to directly correspond to the number of moves made.

G Go, Start Motion

The G command does more than just start motion. It can be used dynami-
cally during motion to create elaborate profiles. Since the SmartMotor allows
position, velocity and acceleration to change during motion “on-the-fly”, the G
command can be used to replace the current move with a new one. All faults
must be cleared before the G command will work, as indicated by the ‘drive
ready’ status bit. Faults can be cleared by correcting the fault situation and
then issuing the ZS command.

S Abruptly Stop Motion in Progress

If the S command is issued while a move is in progress it will cause an imme-
diate and abrupt stop with all the force the motor has to offer. After the stop,
assuming there is no position error, the motor will still be servoing. The S com-
mand works in all modes.

X Decelerate to Stop

If the X command is issued while a move is in progress it will cause the motor
to decelerate to a stop at the last entered deceleration value according to the
ADT, DT, and AT commands. When the motor comes to rest it will servo in
place until commanded to move again. The X command works in Position,
Velocity and Torque Modes. It also applies to Follow and Cam Modes.

Basic Motion

23

O=frm Set/Reset Origin to Any Position

The O= command (using the letter O, not the number zero) allows the host or
program to declare the current position to a specific value, positive or negative,
or 0 in the range -2,147,483,648 to +2,147,483,647. This command sets the
commanded trajectory position to the value specified at that point in time. and
the actual position is adjusted similarly. The O= command directly changes the
motor’s position register and can be used as a tool to avoid +/- 31 bit roll over
Position Mode problems. If the SmartMotor runs in one direction for a very long
time it will reach position -2,147,483,648 or +2,147,483,647, which will cause
the position counter to change sign. While that is not an issue with Velocity
Mode, it can create problems in absolute position moves or create confusing
results when reading position.

OSH=frm Shift the Origin by Any Distance

The OSH= command will shift the origin by the amount described, which may
be -2,147,483,648 to +2,147,483,647. This command is similar to O=, except
that it specifies a relative shift. This can be useful in applications where the
origin needs to be shifted during motion, without losing any position counts.

OFF Turn Motor Servo Off

The OFF command will turn off the motor’s drive. When the drive is turned off,
the ‘PWR/SERVO’ status LEDs will revert to flashing green. The motor will not
free-wheel by default in the OFF state, since each SmartMotor has a safety
feature that engages dynamic braking equivalent to the MTB command. This
has the effect of causing a resistance to motion. To make a SmartMotor truly
free-wheel when off, issue BRKRLS and be sure any faults are cleared.

MP Position Mode

Issuing the MP command puts the SmartMotor in Position Mode. Position
Mode is the default mode of operation for the SmartMotor upon power-up. In
Position Mode, the PT, PRT, VT, ADT, AT, and DT commands can be used
to govern motion. At a minimum, ADT, VT, and (PT or PRT) must be issued.

MV Velocity Mode

Velocity Mode will allow continuous rotation of the motor shaft. In Velocity
Mode, the programmed position using the PT or the PRT commands is ignored.
Acceleration and velocity need to be specified using the ADT and the VT com-
mands. After a G command is issued, the motor will accelerate up to the pro-
grammed velocity and continue at that velocity indefinitely. In Velocity Mode as
in Position Mode, velocity and acceleration are changeable on-the-fly, at any
time. Simply specify new values and enter another G command to trigger the
change. In Velocity Mode the velocity can be entered as a negative number,
unlike in Position Mode where the location of the target position determines
velocity direction or sign. If the 32 bit register that holds position rolls over in
Velocity Mode it will have no effect on the motion.

Basic Motion

24

Velocity Mode calculates its trajectory as an ideal position over time and cor-
rects the resulting measured position error instead of measuring velocity error.
This is significant in that this mode will ‘catch up’ lost position just as Position
Mode will if a disturbance causes a lagging position error.

MT Torque Mode

In Torque Mode, the motor will apply a PWM commutation effort to the motor
proportional to the T command, and independent of position. If the motor
model has a current-control commutation mode, then torque is controlled in
proportion to the T command. Otherwise, torque will be dependant on the
actual motor speed and bus voltage, eventually reaching an equilibrium speed.
Nevertheless, for a locked rotor the torque will be largely proportional to the T
value and bus voltage.

To run the motor in Torque Mode, use the T command and issue a G for the
new torque value to take effect.

The internal encoder tracking will still take place and can be read by a host
or program, but the value will be ignored for motion because the PID loop is
inactive.

TS=frm Set Torque Slope

The TS= command will cause new torque settings to be reached gradually,
rather than instantly. Values may be from -1 to +2,147,483,647. -1 disables
the slope feature and causes new torque values to be reached immediately. A
TS setting of 65536 will increase the output torque by one unit per PID sample
period.

T=frm Set Torque Value, -32767 to 32767

In Torque Mode, activated by the MT command, the drive duty cycle can be
set with the T= command. The following number or variable must fall in the
range between -32767 and 32767. The full scale value relates to full scale or
maximum duty cycle. At a given speed there will be reasonable correlation
between drive duty cycle and torque. With nothing loading the shaft, the T=
command will dictate open-loop speed. A G must be entered after the T= for
the new value to take effect.

The following example will increase torque up to 8000 units, one unit every PID
sample period.

MT ' Select torque mode.
T=8000 ' Final torque after the TS ramp that we want.
TS=65536 ' Increase the torque by 1 unit of T per PID sample.
G ' Begin move

Basic Motion

25

You must issue a
G for a new torque
value to take effect
in Torque Mode.

26

BRKRLS Brake Release
BRKENG Brake Engage
BRKSRV Automatically Release Brake Only When Servo Active
BRKTRJ Automatically Release Brake Only When in Trajectory

The SmartMotor is available with power safe brakes. These brakes will apply
a force to keep the shaft from rotating should the SmartMotor lose power.
Issuing the BRKRLS command will release the brake and BRKENG will
engage it. There are two other commands that initiate automated operating
modes for the brake. The command BRKSRV engages the brake automati-
cally, should the motor stop servoing and no longer hold position for any
reason. This event might be due to loss of power or just a position error, limit
fault, or over-temperature fault.

Finally, the BRKTRJ command will engage the brake in response to all of the
previously mentioned events, plus any time the motor is not performing a tra-
jectory. In this mode the motor will be off and the brake will be holding it in
position, perfectly still, rather than the motor servoing when it is at rest. As
soon as another trajectory is started, the brake will release. The time it takes
for the brake to engage and release is on the order of only a few milliseconds.

The brakes used in the SmartMotor are zero-backlash devices with extremely
long life spans. It is well within their capabilities to operate interactively within
an application. Care should be taken not to create a situation where the brake
will be set repeatedly during motion or it will reduce the brake’s life.

Where a SmartMotor is not equipped with a physical brake, it will simulate the
braking with its Mode Torque Brake or MTB feature which causes a faulted
motor to still experience strong resistance to shaft motion. MTB only works
when power is applied to the SmartMotor and is no substitute for an actual
brake where safety is an issue.

EOBK(exp) Re-route Brake Signal to I/O

When the automated brake functions are desired for an external brake, this
command can be used to choose a specified I/O port. This corresponds to
the same I/O pin numbering used by other I/O commands. These commands
re-route the internal brake signal to the respective I/O pins. The brake signal
is active high to engage the brake to the shaft on the pulled-up 5 Volt I/O. On
the 24 Volt I/O, the default state is off (0 Volts), therefore the brake engages
the shaft when the 24 Volt signal is low. The EOBK(-1) command removes the
brake function from any external I/O. Only one pin can be used as the brake
pin at any one time so each command supersedes the other.

MTB Mode Torque Brake

Mode Torque Brake is the default state upon power-up. It causes the motor
control circuits to tie the 3 phases of the motor together as a form of dynamic
braking. Upon a fault, or the OFF command, instead of the motor coasting to a
stop, it will abruptly stop. This is not done by servoing the motor to a stop, but
by simply shorting all of the coils to ground. If there is a constant torque on the
motor, it will allow only very slow movement of the shaft.

Basic Motion

The MTB feature
only works when
power is applied to
the SmartMotor and
is not a substitute
for a physical brake
where safety is an
issue.

CAUTION

27

The MTB command immediately activates dynamic braking independently of
the Brake Mode. MTB while the motor is running will turn off the motor drive
and enable dynamic braking, even if BRKRLS has been issued. To remove
the effect of the MTB command, either issue the OFF command, or issue a
motion command.

BRKENG can engage dynamic braking unconditionally as well. The opposite
of this command is BRKRLS; OFF will not remove the effect of BRKENG.

To allow a motor to freewheel, issue OFF. To ensure that the MTB command
is not active, command BRKRLS and the dynamic braking will release. Finally,
make sure to clear any fault or choose a fault action of freewheel since faults
can also activate dynamic braking.

Status Word 6, Bit 11 reports if dynamic braking is active or not, including as
a result of the MTB command, the BRKENG command, or a fault action.

Commutation Modes
The following commands allow selection of different Commutation Modes.
Since the SmartMotor uses a Brushless motor it does not have the mechanical
commutator that a brushed motor has to switch the current to the next optimal
coil as the rotor swings around. To cause shaft rotation in a brushless motor,
the control electronics have to see where the shaft is, and decide which coils
to deliver the current to next.

The most typical way to determine the orientation of the rotor is with small
magnetic sensing devices called "Hall Sensors". The process of shifting which
coils get the current based on shaft rotation is called "Commutation". There are
may ways of commutating a motor and the best choice may vary by application.

MDT Mode Drive Trapezoidal

Trapezoidal commutation uses only the hall sensors (default). This is the most
simple method and is ready upon boot up under all circumstances and is very
effective despite minor inaccuracies typical in the mechanical placement of the
sensors.

MDE Mode Drive Enhanced

This driving method is exactly the same as basic Trapezoidal commutation
using Hall Sensors, except that it also uses the internal encoder to add accu-
racy to the commutation trigger points. This idealized trapezoidal commutation
mode offers the greatest motor torque and speed, but can exhibit minor tick-
ing sounds at low rates as the current shifts abruptly from one coil to the next.
Since MDE uses the encoder, it requires angle match (the first sighting of the
encoder index) before it will engage.

MDS Mode Drive Sine

This is Sinusoidal (sine) Commutation, Voltage Mode. It offers smoother com-
mutation compared to Trapezoidal Modes by shifting current more gradually

Basic Motion

MDE, MDS, and
MDC require angle
match before they
will take effect.
This means the
SmartMotor's fac-
tory calibration is
valid and the index
mark of the inter-
nal encoder has
been seen since
startup. Until then,
the SmartMotor will
operate in default
MDT.

28

from one coil to the next, but at a small (10-20%) cost to the motor's torque and
speed performance. Since MDS uses the encoder, it requires angle match (the
first sighting of the encoder index) before it will engage. MDS offers beautifully
smooth and quiet rotation at low speeds and is the best ergonomic choice.

MDC Mode Drive Current

Available only in the IP-65 versions of Class 5 SmartMotors, this sinusoidal
(sine) commutation method, augmented with digital current control, offers the
best possible performance without sacrificing quiet operation. It is definitely the
best choice on every level where the capability is available. Since MDC uses
the encoder, it requires angle match (the first sighting of the encoder index)
before it will engage.

Status Word 6 contains bits that indicate what commutation mode is cur-
rently active. Note that a command for a mode may not take effect until the
angle match requirement is met. These Status Bits can be used to test for
this success.

Status Word 6:

Bit 0 Trap-hall Mode

Bit 1 Trap-encoder (enhanced) Mode

Bit 2 Sine Voltage Mode

Bit 3 Sine Current (vector) Mode

MDB Trajectory Overshoot Braking (TOB) option.

This command should be used after entering MDT or MDE to enable TOB
action. This option reverts to off when one of the above choices of commuta-
tion is made. This option is off by default. Status Word 6, Bit 9 indicates if this
mode is active.

MINV(0), MINV(1) Invert Motion Direction

The MINV(1) command will invert the direction convention of the SmartMotor
and MINV(0) will restore the default.

Synchronized Motion using TM

All SmartMotors that are equipped with the CAN port option come with
Combitronic capability, which is basically the unification of all SmartMotors on
a CAN network. With Combitronic technology comes the ability to perform mul-
tiple axis synchronized motion. The following is the command set that makes
multi-axis synchronized linear moves simple.

Basic Motion

29

PTS(), PRTS() Position Target Synchronized abs. and rel.

These commands allow the user to identify two or three axis positions (posn)
and associated axis CAN addresses (axisn) to cause a synchronized multi-
axis move where the combined path velocity is controlled.

 PTS(pos1;axis1,pos2;axis2[,pos3;axis3])

In addition to the three axis limitation, the programmer must be mindful of
the overall limit of 64 characters per line of code in the SmartMotor. Using
variables in place of explicit positions is more space efficient. The PTS() com-
mand processes the positions as absolute, whereas the PRTS() command
treats them as relative. After a PTS() or PRTS() command, the combined
distance is stored in the PTSD variable and the combined axis move time is
stored in the PTST variable, in (ms), in the event these may be useful to the
programmer. PTSD and PTST can be used in a program or read over the
serial channel by the RPTSD and RPTST commands. The PTS() command
first goes out to the Combitronic network and gathers the last target positions
in order to calculate the relative motion necessary to get to the next absolute
position. It is extremely important that prior to a synchronized move being
calculated with the PTS() or PRTS() commands, the previous target positions
are accurate and uncorrupted by origin shifts. Then, it is equally important that
the synchronized move NOT be started before each axis reaches its previous
target positions.

VTS= Velocity Target for Synchronized Move

The motion along a synchronized move is defined along the path. The VTS
command is specific to defining the combined velocity of all contributing axes.
If the move were to occur in an X-Y plane, for example, the velocity set by
VTS would not pertain to the X axis or the Y axis, but rather to the combined
motion, in the direction of motion.

ADTS=, ATS=, DTS= Accel. Targets for Synchronized Move

Like the velocity parameter, ADTS pertains to the combined path motion. The
PTS() command scales the path velocity and accelerations set by the VTS=
and ADTS= commands so that each axis will reach its constant velocity por-
tions at exactly the same time, creating combined, straight-line motion. The
ADTS= command sets both acceleration and deceleration, whereas ATS= and
DTS= allow the programmer to set separate acceleration and deceleration
where desired.

GS Start Synchronized Move

To start a synchronized motion profile, use the GS command. It will, behind
the scenes, issue G commands to all axes involved in the previous PTS() or
PRTS() command. It is important to be sure all motors are at their previous
targets before issuing the GS command. Otherwise, the motion will not be
synchronized.

Basic Motion

30

Basic Motion

TSWAIT Wait for Synchronized Move to complete

After a GS command has been issued to start a synchronized move, the
TSWAIT command can be used to pause program execution until the move
has been completed. A standard TWAIT command would not work where the
motor issuing the PTS() and GS commands had a zero length contribution to
the total move. That is why the TSWAIT command was specially created.

ADTS=100 'Set target synchronized acceleration
VTS=100000 'Set target synchronized velocity
PTS(30000;1,40000;2) 'Set target positions, axes 1 & 2
GS 'Go, starts the synchronized move
TSWAIT 'Optional wait for synch. move to complete

The previous example is a synchronized move in its simplest form. The code
could be written in either motor 1 or 2 and it would work the same.

The TSWAIT command merely pauses program execution (except for interrupt
routines). It may be desirable to continue running the program while waiting.
In that event, the program can loop around the Synchronized Move Status Bit,
which is status word 7, bit 15, accessible by variable B(7,15). So the follow-
ing While Loop code example is equivalent to the TSWAIT command, except
that more code can be added within the loop for execution during the wait.

WHILE B(7,15)==1 'While synchronized move in process
 ...
LOOP 'Loop back

The next code example adds subroutine efficiency, the efficiency of setting up
the "next" move while the "existing" move is ongoing, and adds an error check
before continuing to issue synchronized move commands.

ADTS=100 'Set target synchronized acceleration
VTS=100000 'Set target synchronized velocity
WHILE Bt:1|Bt:2|Bt:3 'Loop while motion in any axis
 WAIT=10 'Allow time for other CAN communications
LOOP 'Loop back
x=1000 y=2000 z=3500 GOSUB10 'Put positions into variables
x=2200 y=1800 z=1200 GOSUB10 'Put positions into variables
x=1500 y=2600 z=2500 GOSUB10 'Put positions into variables
x=-120 y=1000 z=1500 GOSUB10 'Put positions into variables
x=0 y=0 z=0 GOSUB10 'Put positions into variables
END 'End Program

C10 'Place label
 PTS(x;1,y;2,z;3) 'Set next positions, axes 1, 2 & 3
 'and do this while the previous move
 'is in progress
 WHILE B(7,15)==1 'While synchronized move in process
 'If one motor faults, stop all and end program -
 IF B(0,0):1==0 MTB:0 END '*note
 IF B(0,0):2==0 MTB:0 END '*note
 IF B(0,0):3==0 MTB:0 END '*note
 LOOP 'Loop back
 GS 'Go, starts the synchronized move

31

RETURN 'Return to call

'*note: Managing faults is better done by using interrupts
'in other motors, taught later in this guide.

There is a note in the preceding example program stating that a better job can
be done of detecting and reacting to errors by using interrupts. This is true
because the example as written causes a considerable amount of unneces-
sary communications over the Combitronic interface. By loading interrupt
routines in each SmartMotor that constantly monitor for drive status, each
motor can be made responsible for reporting a local error. By this means, it
is no longer necessary to poll each motor. The motor controlling the synchro-
nized motion can simply do a quick check for reports right before issuing the
next GS command. This will be shown in greater detail later in the Interrupt
Programming section.

Some gantry type multiple-axis machines have two motors operating the same
axis of motion. In this instance, an axis address can be repeated as shown in
the following example where the "x" axis is driven by motors 1 and 2.

PTS(x;1;2,y;3,z;4) 'Set next positions, axes x, x', y & z

In this case, the position, velocity and acceleration data sent to axis 1 will be
identically sent to axis 2, both axes being the basic "x" axis.

PTSS(), PRTSS() Pos. Target Synch. abs. and rel., Supplemental

The PTSS() and PRTSS() commands allow supplemental axis moves to be
added and synchronized with the previous PTS() or PRTS() commanded
motion. Issue these additional axis commands after a PTS() or PRTS() com-
mand, but before the next GS. The commands allow the user to identify one
axis position (posn) and associated axis CAN addresses (axisn) at a time.

PTSS(posn;axisn)

The supplemental axis motions will start at exactly the same time as the main
PTS() or PRTS() motion with the next GS, they will transition from their accel-
erations to their slew velocities at exactly the same time, and decelerate and
stop at exactly the same times.

Moves too short to ever reach the VTS= velocity will execute a triangular,
rather than trapezoidal, profile, but still be synchronized.

What is different about the PTSS() move from a PTS() member is that the
supplemental axis moves do not reduce the primary profile velocity in an effort
to hold the total motion to a total combined velocity set by VTS. Likewise for
Acceleration.

The combined motion of the PTS() move will be controlled to the VTS limit,
and then PTSS() moves will simply align with that combined motion.

Basic Motion

32

Basic Motion

ADTS=100 'Set target synchronized acceleration
VTS=100000 'Set target synchronized velocity
x=1000 y=2000 z=3500 a=100 b=200
PTS(x;1,y;2,z;3) 'Set next positions, axes 1, 2 & 3
PTSS(a;4) 'Set supplemental position, axes 4
PTSS(b;5) 'Set supplemental position, axes 5
GS 'Go, starts the synchronized move

Note that if the supplemental axis move is longer than the PTS() move, the
supplemental axis velocity will exceed the limit set by VTS=.

33

Program commands are like chores, whether it is to turn on an output, set a
velocity or start a move. A program is a list of these chores. When a pro-
grammed SmartMotor is powered-up or is reset with the Z command, it will
execute its program from top to bottom, with or without a host PC connected.
This section covers the commands that control the program itself.

SmartMotor programs are written
in the SMI software editor opened
by selecting “File” - “New”. The
simple program example to the
right shows an infinite loop. It will
cause the motor to move back and
forth forever.

Programs execute at rates of thou-
sands of lines per second.

The following are commands that
can be used in your program to
control how it flows and how it
makes decisions:

RUN Execute Stored User Program

If the SmartMotor is reset with a Z command or at power-up, all previous vari-
ables and mode changes will be erased for a fresh start and the program will
begin to execute from the top. Alternatively, the RUN command can be used
to start the program, in which case the state of the motor is unchanged and its
program will be invoked.

RUN? Halt Program If No RUN Issued

The RUN? command prevents further execution of code until the RUN com-
mand is received over the serial channel. Code will execute on power-up to
the point of reaching RUN?. When RUN is issued via the serial port, the CPU
will at that point, execute all code from the top-down, jump over the RUN? com-
mand to the next line of code and continue executing to the end of the program.

PRINT(“Boot-Up”,#13) 'Message always prints
RUN? 'Pgm. stops here on reset or power up
PRINT(“Run Issued”,#13) 'This runs if RUN received
END

The above code will print only the first message after a Z command or upon
power-up, but print both messages when a RUN command is received over
the serial line.

The RUN? command placed at the top of your program during development
can protect you from accidentally locking up your SmartMotor with a bad pro-
gram.

 Program Flow

Once the program is running, there are a variety of commands that can redi-
rect program flow and most of those can do so based on certain conditions.
How these conditional decisions are set up determines what the programmed
SmartMotor will do, and exactly how “smart” it will actually be.

GOTO#, GOTO(exp), C# Redirect Program Flow, Place a Label

The most basic command for redirecting program flow, without inherent con-
ditions, is GOTO# or GOTO(exp), used in conjunction with the label C#. A
label consists of the letter C followed by a number (#) between 0 and 999 and
is inserted in the program as a place marker. If a label, C1 for example, is
placed in a program and that same number is placed at the end of a GOTO
command, GOTO1 example, the program flow will be redirected to label C1
and the program will proceed from there.

C10 'Place label
 IF IN(0)==0 'Check Input 0
 GOSUB20 'If Input 0 low, call Subroutine 20
 ENDIF 'End check Input 0
 IF IN(1)==0 'Check Input 1
 a=30 'as example for below
 GOSUB(a) 'If Input 1 low, call Subroutine 30
 ENDIF 'End check Input 1
GOTO(10) 'Will loop back to C10

As many as a thousand labels can be used in a program (0 - 999), but, the
more GOTO commands used, the harder the code will be to debug or read.
Try using only one and use it to create the infinite loop necessary to keep the
program running indefinitely, as some embedded programs do. Put a C10
label near the beginning of the program, but after the initialization code and
a GOTO10 at the end. Then every time the GOTO10 is reached the program
will loop back to label C10 and start over from that point until the GOTO10
is reached, again, which will start the process at C10 again, and so on. This
will make the program run continuously without ending. Any program can be
written with only one GOTO. It might be a little harder, but it will tend to force
better program organization. Organize your program using the GOSUB
command instead, and it will be much easier to read and support.

GOSUB#,GOSUB(exp),RETURN Execute a Subroutine and Return

Just like the GOTO# command, the GOSUB# command, used in conjunction
with a C# label, will redirect program execution to the location of the label.
But, unlike the GOTO# command, the C# label needs to eventually be fol-
lowed by a RETURN command to return the program execution to the loca-
tion of the original GOSUB# command that initiated the redirection. There
may be many sections of a program that need to perform the same basic
group of commands. By encapsulating these commands between a C# label
and a RETURN, they become a subroutine and may be called any time from
anywhere with a GOSUB# or GOSUB(exp), rather than being repeated in
their totality, over and over again. There can be as many as one thousand
different subroutines (0 - 999) and they can be accessed as many times as
the application requires.

Program Flow

34

Calling subroutines
from the host can
crash the stack if
not done carefully.

CAUTION

By pulling sections of code out of a main loop and encapsulating them into
subroutines, the main code can also be easier to read. Organizing code into
multiple subroutines is a good practice.

C10 'Place label
 IF IN(0)==0 'Check Input 0
 GOSUB20 'If Input 0 low, call Subroutine 20
 ENDIF 'End check Input 0
 IF IN(1)==0 'Check Input 1
 a=30 'as example for below
 GOSUB(a) 'If Input 1 low, call Subroutine 30
 ENDIF 'End check Input 1
GOTO(10) 'Will loop back to C10

IF, ENDIF Conditional Test

Once the execution of the code reaches the IF command, the code between
that IF and the following ENDIF will execute only when the condition directly
following the IF command is true. For example:

a=IN(0) 'Variable ‘a’ set 0,1
a=a+IN(1) 'Variable ‘a’ 0,1,2
IF a==1 'Use double = test
 b=1 'Set ‘b’ to one
ENDIF 'End IF

Variable b will only get set to one if variable a is equal to one. If a is not equal
to one, then the program will continue to execute using the command follow-
ing the ENDIF command.

Notice also that the SmartMotor language uses a single equal sign (=) to
make an assignment, such as where variable a is set to equal the logical
state of input 0. Alternatively, a double equal (==) is used as a test, to query
whether a is equal to 1 without making any change to a. These are two dif-
ferent functions. Having two different syntaxes has other benefits.

ELSE, ELSEIF

The ELSE and ELSEIF commands can be used to add flexibility to the IF state-
ment. If it were necessary to execute different code for each possible state of
variable a, the program could be written as follows:

a=IN(0) 'Variable ‘a’ set 0,1
a=a+IN(1) 'Variable ‘a’ 0,1,2
IF a==0 'Use double ‘=’ test
 b=1 'Set ‘b’ to one
ELSEIF a==1
 c=1 'Set ‘c’ to one
ELSEIF a==2
 c=2 'Set ‘c’ to two
ELSE 'If not 0 or 1
 d=1 'Set ‘d’ to one
ENDIF 'End IF

Program Flow

35

There can be many ELSEIF statements, but at most one ELSE. If the ELSE
is used, it needs to be the last statement in the structure before the ENDIF.
There can also be IF structures inside IF structures. That’s called “nesting”
and there is no practical limit to the number of IF structures that can nest
within one another.

The commands that can conditionally direct program flow based on a test,
such as the IF, where the test may be a==1, can have far more elaborate tests
inclusive of virtually any number of operators and operands. The result of a
comparison test is zero if “false”, and one if “true”. For example:

IF ABS(EA-5)>x 'A numeric test
 'placing further commands here
ENDIF
IF (a<b)&(c<d) 'A logical test using bit-wise AND
 'placing further commands here
ENDIF
IF (a==b)|(c!=d) 'A logical test using bit-wise OR
 'placing further commands here
ENDIF

Complex logical tests involving bit-wise AND, OR and Exclusive OR only
depend on whether the result of an operation is zero or one. Any test for zero
or not zero must be made explicitly.

IF (a<b)&c 'This should be avoided and replaced by
IF (a<b)&(c!=0) 'an explicit test of c not zero

WHILE, LOOP

The most basic looping function is a WHILE command. The WHILE is fol-
lowed by an expression that determines whether the code between the
WHILE and the following LOOP command will execute or be passed over.
While the expression is true, the code will execute. An expression is true
when it is non-zero. If the expression results in a “zero” then it is false. The
following are valid WHILE structures:

WHILE 1 '1 is always true
 OS(0) 'Set output to 1
 OR(0) 'Set output to 0
LOOP 'Will loop forever

a=1 'Initialize variable ‘a’
WHILE a 'Starts out true
 a=0 'Set ‘a’ to 0
LOOP 'This never loops back
a=0 'Initialize variable ‘a’
WHILE a<10 'a starts less
 a=a+1 'a grows by 1
LOOP 'Will loop back 10 times

The task or tasks within the WHILE loop will execute as long as the loop con-
dition remains true.

Program Flow

36

The BREAK command can be used to break out of a WHILE loop, although
that somewhat compromises the elegance of a WHILE statement’s single test
point, making the code a little harder to follow. The BREAK command should
be used sparingly or preferably not at all in the context of a WHILE.

If it’s necessary for a portion of code to execute only once based on a certain
condition then use the IF command.

SWITCH, CASE, DEFAULT, BREAK, ENDS

Long, drawn out IF structures can be cumbersome, and burden the program
visually. In these instances it can be better to use the SWITCH structure.

The following code would accomplish the same thing as the ELSEIF program
example:

a=IN(0) 'Variable ‘a’ set 0,1
a=a+IN(1) 'Variable ‘a’ 0,1,2
SWITCH a 'Begin SWITCH
 CASE 0
 b=1 'Set ‘b’ to one
 BREAK
 CASE 1
 c=1 'Set ‘c’ to one
 BREAK
 CASE 2
 c=2 'Set ‘c’ to two
 BREAK
 DEFAULT 'If not 0 or 1
 d=1 'Set ‘d’ to one
BREAK
ENDS 'End SWITCH

Just as a rotary switch directs electricity, the SWITCH structure directs the flow
of the program. The BREAK statement then jumps the code execution to the
code following the associated ENDS command. The DEFAULT command cov-
ers every condition other than those listed. It is optional.

TWAIT Wait for Trajectory to Finish

The TWAIT command pauses program execution while the motor is moving.
Either the controlled end of a trajectory, or the abrupt end of a trajectory due
to an error, will terminate the TWAIT waiting period. If there were a suc-
cession of move commands without this command, or similar waiting code
between them, the commands would overtake each other because the pro-
gram advances, even while moves are taking place. The following program
has the same effect as the TWAIT command, but has the added virtue of
allowing other things to be programmed during the wait, instead of just wait-
ing. Such things would be inserted between the two commands.

WHILE Bt 'While trajectory
 ...
LOOP 'Loop back

Program Flow

37

38

WAIT=frm Wait, Pause Program Execution for Time in Milliseconds

There will probably be circumstances where the program execution needs
to be paused for a specific period of time. The WAIT command will pause
the program for the specified number of milliseconds. WAIT=1000, for
example, would wait one second. The following code would be the same
as WAIT=1000, only it would allow code to execute during the wait if it were
placed between the WHILE and the LOOP.

CLK=0 'Reset CLK to 0
WHILE CLK<1000 'CLK will grow
 ...
LOOP 'Loop back

STACK Reset the GOSUB Return Stack

The STACK is where information is held with regard to the nesting of subrou-
tines (nesting is when one or more subroutines exist within others). In the
event program flow is directed out of one or more nested subroutines, without
executing the included RETURN commands, the stack will be corrupted. The
STACK command resets the stack with zero recorded nesting. Use it with
care and try to build the program without requiring the STACK command.

One possible use of the STACK command might be if the program used
one or more nested subroutines and an emergency occurred, the program
or operator could issue the STACK command and then a GOTO command
which would send the program back to a label at the beginning. Using this
method instead of the RESET command would retain the states of the vari-
ables and allow further specific action to resolve the emergency.

C1 'Subroutine C1
STACK 'Clear the nesting stack
RUN 'Begin the program, retaining variables
RETURN 'Never reached, but necessary for comp.

END End Program Execution
If it is necessary to stop a program, use an END command and execution
will stop at that point. An END command can also be sent by the host to
intervene and stop a program running within the motor. The SmartMotor
program is never erased until a new program is downloaded. To erase the
program in a SmartMotor, download only the END command as if it were a
new program. That will be the only command that is left in the SmartMotor
until a new program is downloaded. To compile properly, every program
needs an END somewhere, even if it is never reached. If the program
needs to run continuously, the END statement has to be outside the main
loop.

Program Flow

39

Program Flow

Interrupt Programming

ITR(), ITRE, ITRD, EITR(), DITR(), RETURNI Interrupt Commands

A SmartMotor can be configured to execute a routine upon the change of a
status bit using the Interrupt ITR() function. There are dozens of different bits
of information available in the SmartMotor that are held in groups of 16 bits
called “Status Words”. ITR() can tell the SmartMotor to execute a subroutine
upon the change of any one of these status bits in any Status Word. When the
status bit changes, that subroutine will execute at that instant from wherever
the normal program happens to be. A program of some sort must be running
for the interrupt routine to execute.

Interrupt subroutines are ended with the RETURNI command to distinguish
them from ordinary subroutines. After the interrupt code execution reaches
the RETURNI command, it will go back to the program exactly where it was
interrupted. An interrupt subroutine must not be called directly with a GOSUB
command. The ITR() function has five parameters:

ITR(Int #, Status Word, Bit #, Bit State, Label #)

Int #: Interrupt number: there can be eight: 0 to 7
Status Word: 0-8,12,13,16 and 17 (at time of this printing)
Bit #: 0 to 15
Bit State: The state that causes the interrupt, 0 or 1
Label #: Subroutine label number to be executed, 0 to 999

For an interrupt to work it must be enabled at two levels. Individually enable
an interrupt with the EITR() command with the interrupt number, 0 to 7, in the
parentheses. Then enable all interrupts with the ITRE command. Similarly,
individual interrupts can be disabled with the DITR() command, and all inter-
rupts can be disabled with the ITRD command.

The STACK and END commands clear the tracking of subroutine nesting, and
disable all interrupts. In the following program example, interrupt number zero
is set to look at Status Word 3, Bit 15, which is “Velocity Target Reached”.
When this status bit switches to 1, subroutine 20 will execute, issuing an X
command, stopping the motor. Every time the motor reaches its target veloc-
ity, it will immediately decelerate to a stop, causing it to forever accelerate and
decelerate without ever spending any time at rest, or at the target velocity.

EIGN(2) 'Disable Left Limit
EIGN(3) 'Disable Right Limit
ZS 'Clear faults
VT=700000 'Set Target Velocity.
ADT=100 'Set Target Accl and Decel.
MV 'Set Mode Velocity
ITR(0,3,15,1,20) 'Set Interrupt
EITR(0) 'Enable Interrupt zero
ITRE 'Enable All Interrupts
G 'Start motion
C10 'Place a label
GOTO10 'Loop..., req. for int. operation
END 'End (never reached)

The STACK and
END commands
disable all
interrupts.

CAUTION

40

Program Flow

C20 'Interrupt Subroutine
 X 'Decelerate to stop
 TWAIT 'Hold program until motor reaches stop
 G 'Restart velocity motion
RETURNI 'Return to infi nite loop

TMR(exp1,exp2) Timers

The TMR() function controls four timers, the states of which can be found in
the first four bits of Status Word 4. If it is desired that the interrupt routine
execute after a certain period of time, the TMR() function can be used. The
TMR() function has two parameters where:

exp1 Is the Timer #. There are four timers: 0 to 3
exp2 Is the Value in milliseconds, to count down to zero

While the timer is counting down, the corresponding status bit in Status Word
4 will be one. When it reaches zero, the status bit will revert to zero. This bit
change can be made to trigger a subroutine using the ITR() function.

EIGN(2) 'Disable Left Limit
EIGN(3) 'Disable Right Limit
ZS 'Clear faults
MP 'Set Position Mode
VT=500000 'Set Target Velocity.
AT=300 'Set Target Acceleration.
DT=100 'Set Target Deceleration.
TMR(0,1000) 'Set Timer 0 to 1s
ITR(0,4,0,0,20) 'Set Interrupt
EITR(0) 'Enable Interrupt
ITRE 'Enable all Interrupts
p=0 'Initialize variable p
O=0 'Set commanded and actual pos. to zero
C10 'Place a label
 IF PA>47000 'Just before 12 moves
 DITR(0) 'Disable Interrupt
 TWAIT 'Wait till reaches 48000
 p=0 'Reset variable p
 PT=p 'Set Target Position
 G 'Start motion
 TWAIT 'Wait for move to complete
 EITR(0) 'Re-enable Interrupt
 TMR(0,1000) 'Re-start timer
 ENDIF
GOTO10 'Go back to label
END 'End (never reached)

C20 'Interrupt Subroutine Label
 TMR(0,1000) 'Re-start timer
 p=p+4000 'Increment variable p
 PT=p 'Set Target Position
 G 'Start Motion
RETURNI 'Return to main loop

41

Program Flow

Error Handling
In many multiple-axis applications, if there is a fault in one axis, it is desirable
to stop all motion in the machine. An effective way to accomplish this is to
place the following example code into every motor. At such time as any axis
experiences a drive-disable, interrupt routine C0 will execute. C0 will then
immediately broadcast a global MTB, Mode Torque Brake to stop all axes.
After that, the motor calling for the shutdown will place its address in the user
accessible mode bits of Status Word zero.

EIGN(W,0,12) 'Another way to disable Travel Limits
ZS 'Clear faults
ITR(0,0,0,0,0) 'Set Int 0 for: stat word 0, bit 0,
 'shift to 0, to call C0
EITR(0) 'Enable Interrupt 0
ITRE 'Global Interupt Enable
PAUSE 'Pause to prevent "END" from disabling
 'Interrupt, no change to stack
END

C0 'Faut handler
 MTB:0 'Motor will turn off with Dynamic
 'breaking, tell other motors to stop.
 US(0):0 'Set User Status Bit 0 to 1 (Status
 'Word 12 bit zero)
 US(ADDR):0 'Set User Status Bit "address" to 1
 '(Status Word 12 Bit "address")
RETURNI

After all motors have been stopped, appropriate recovery actions can be
taken.

PAUSE Suspending Program Execution

The PAUSE command when executed will suspend the program execution
until the RESUME command is received. It will not affect the present state
of the Interrupt Handler i.e.; if the Interrupt Handler is enabled it will still be
enabled after a PAUSE and its execution has no affect on the interrupt/sub-
routine stack. There is a separate stack for PAUSE and will go 10 “resumes“
deep that allow for PAUSES over the communications and within User
Program Interrupt routines.

RESUME Resuming from a PAUSE

The RESUME command when executed will start program execution from the
location following the PAUSE command. It is intended to be issued externally
over communications and is not allowed to be compiled within a program.

The RESUME command does not differentiate where the PAUSE came from.
i.e. If you have a PAUSE in the main program and a PAUSE in an interrupt,
whichever PAUSE is active at the time will be resumed.

Monitor Status
Word 12 in SMI
Motor View to see
the results of an
axis fault.

42

43

Variables are data holders that can be set and changed within the program or
over one of the communication channels. Although most of the variables are
32-bit signed integers, there are also eight floating-point variables. All vari-
ables are represented by lower-case text. They are stored in volatile memory,
meaning that they are lost when power is removed and default to zero upon
power-up. If they need to be saved, you must store them in EEPROM, non-
volatile memory using the VST command.

There are three sets of integer variables, each containing twenty-six 32-bit
signed integers and referenced by a,b,c,…,x,y,z, aa,bb,cc,…,xx,yy,zz
and aaa,bbb,ccc,…,xxx,yyy,zzz. There is an additional set of fifty-one
32-bit signed integers in array form, al[i],i=0…50. The eight floating point
variables are also in array form and referenced by af[i],i=0…7.

a = # Set variable a to a numerical value

a = frm Set variable a to value of a variable or formula

All variables can be used in mathematical expressions assuming standard
hierarchical rules and using any of the mathematical operations

+ Addition

- Subtraction

* Multiplication

/ Division

Together with the logical operations

< Less than

> Greater than

== Equal to

!= Not Equal to

<= Less than or Equal to

>= Greater than or Equal to

The following additional integer operations are also supported:

^ Raise to an integer power <= 4

& Bit wise AND (see appendix A)

| Bit wise OR (see appendix A)

!| Bit wise Exclusive OR (see appendix A)

% Modulo

SQRT(x) Integer Square Root (x = integer, where x>=0)

ABS(x) Integer Absolute Value (x = integer)

 Variables and Math

The following floating point functions are also supported:

FSQRT(x) Floating Point Square Root(x=float where x >= 0)

FABS(x) Floating Point Absolute Value (x = float)

SIN(x) Floating Point Sine (x = float in degrees)

COS(x) Floating Point Cosine (x = float in degrees)

TAN(x) Floating Point Tangent (x = float in degrees)

ASIN(x) Floating Point Arc Sine in degrees on [-90,90],
 (x = float on the interval [-1,1])

ACOS(x) Floating Point Arc Cosine in degrees on [0,180],
 (x = float on the interval [-1,1])

ATAN(x) Floating Point Arc Tangent in degrees on [-90,90] ,
 (x = float)

PI Floating Point representation of PI = 3.14159265359…

In any operation, if the input is an integer then the result remains an integer.
A result is promoted to a float once the operation includes a float. Functions
that require a floating point argument implicitly promote integer arguments to
float. In converting a floating point number to an integer result, the floating point
number is truncated toward zero. Although the floating point variables and their
standard binary operations conform to IEEE-754 double precision, the floating
point square root and trigonometric functions only produce IEEE-754 single
precision results. Here are some examples:

a=(b+c/d)*e 'Standard hierarchical rules apply
a=2^3 'a=8
c=123%12 'Modulo, c=3, remainder of 123/12
b=(-10<a)&(a<10) 'b=0 if “a” not in range,b=1 otherwise
x=ABS(EA) 'Set x to the abs value of pos error
r=SQRT(a) 'if a=64, r=8, if a=63, r=7
b=af[0] 'if af[0]=1.8,b=1,if af[0]=-1.8,b=-1
af[0]=SIN(57.3) 'Set fl oat var af[0]to sine 57.3 degrees

af[7]=ATAN(af[6])*180/PI 'Set af[7] to arctan result
 'converted to radians
af[4]=af[3]*(af[1]/af[2]-1) 'Standard hierarchical
 'rules apply
af[0]=(a+b)/2+3.0 'if a=8 and b=1,
af[0]=7.0af[0]=(a+b)/2.0+3.0 'if a=8 and b=1,
af[0]=7.5af[5]=FSQRT(a) 'if a=63, af[5]=7.937253952

An array variable is one that has a numeric index component that allows for
the selection of which variable a program is to access. This memory space is
highly flexible because it can hold 51 thirty-two bit integers, or 102 sixteen bit
integers, or 204 eight bit integers (all signed). The array variables take the fol-
lowing form:

Variables and Math

44

ab[i]=frm Set var. to a signed 8-bit value where index i=0...203

aw[i]=frm Set var. to a signed 16-bit value where index i=0...101

al[i]=frm Set var. to a signed 32-bit value where index i=0...50

The index i may be a number, a variable, or an expression.
The same array space can be accessed with any combination of variable types
and can be viewed simply as the union of the data type arrays. Just keep in
mind how much space each variable takes. We can even go so far as to say
that one type of variable can be written and another read from the same space.
For example, if the first four eight bit integers are assigned as follows:

ab[0]=0
ab[1]=0
ab[2]=1
ab[3]=0

they would occupy the same memory space as the first single 32-bit number or
the first pair of 16-bit numbers. The order is least significant to most with ab[3]
being the most significant. Because of the way binary numbers work, this would
make the 32 bit variable al[0] equal to 65,536, as well as the 16-bit variables
aw[0] equal to 0 and aw[1] equal to 1.

A common use of the array variable type is to set up what is called a buffer. In
many applications, the SmartMotor will be tasked with inputting data about an
array of objects and to do processing on that data in the same order, but not
necessarily at the same time. Under those circumstances it may be necessary
to “buffer” or “store” that data while the SmartMotor processes it at the proper
times.

To set up a buffer the programmer should allocate a block of memory to it,
assign a variable to an input pointer, and another to an output pointer. Both
pointers would start out as zero and every time data was put into the buffer the
input pointer would increment. Every time the data was used, the output buf-
fer would likewise increment. Every time one of the pointers is incriminated, it
would be checked for exceeding the allocated memory space and rolled back
to zero in that event, where it would continue to increment as data came in.
This is a first-in, first-out or “FIFO” circular buffer. Be sure there is enough
memory allocated so that the input pointer never overruns the output pointer.

Every SmartMotor has its own little solid-state disk drive for long term storage
of data. It is based on EEPROM technology and can be written to, and read
from, more than a million times.

Variables and Math

45

EPTR = expression Set EEPROM Pointer in Bytes, 0-32,767

To read or write into this memory space, it is necessary to properly locate the
pointer. This is accomplished by setting EPTR equal to the offset in bytes. EE
locations above EPTR equal to 32,339 contain important motor information and
are read only.

VST(variable,index) Store Variables

To store a series of variables, use the VST command. In the “variable” space
of the command, put the name of the variable and in the “index” space, put the
total number of sequential variables that need to be stored. Enter a one if just
the variable specified needs to be stored. The actual sizes of the variables will
be recognized automatically. Do not put the VST command in a tight program
loop or you will likely exceed the 1M write cycles, damaging the EEPROM.

VLD(variable,index) Load Variables

To load variables, starting at the pointer, use the VLD command. In the “vari-
able” space of the command, put the name of the variable and in the “index”
space, put the number of sequential variables to be loaded. Again, the actual
sizes of the variables will be recognized automatically.

Variables and Math

46

Keep the VST
command out of
tight loops to avoid
exceeding the 1M
write cycle limit of
the EEPROM.

47

 System Status

The SmartMotor System Status has been broken up into 16-bit Status Words
(see Appendix for the actual break down of each Status Word). Many status
bits are predefined and offer information about the state of the SmartMotor
operating system or the motor itself. However, there are Status Words that
contain User bits and have been set aside for use by the programmer and his
or her specific application.

Status Bits may not be cleared or reset if the condition which has set it still
exists, for example the Bh bit.

Status Bits can be used to cause interrupts within an application program.
The state of a Status Bit can also be tested by IF and WHILE instructions.
Therefore Status Bits can determine the flow or path of execution of an applica-
tion program.

The following are instructions that are to be used in retrieving and manipulating
Status Words and Bits.

=W(exp) Gets the 16-bit Status Word.

=B(exp1,exp2) Gets Status Bit, exp1=Word#,exp2=Bit#.

Z(exp1,exp2) Clears Status Bit, exp1=Word#,exp2=Bit#.

=B@ Gets a Status Bit thru direct addressing, where @ is
 replaced with a lower case alpha character.

Z@ Clears a Status Bit thru direct addressing, where @ is
 replaced with a lower case alpha character.

ZS Is a clear of a defined set of status bits, its intent is to
 clear the faults of a motor allowing motion to continue
 from a G.

There are many system and motor Status Bits to govern the application pro-
gram and motor behavior; to follow is a list of the very useful directly addressed
Status Bits. It is important to note that the following list is not the full comple-
ment of accessible Status Bits for a program to utilize, and it is necessary to
refer to Appendix F.

General System Directly Addressed Status Bits:

Bk Program check sum/EEPROM failure
Bs Syntax error occurred

General Motor Directly Addressed Status Bits:

Bo Motor off
Bt Trajectory in progress
Bw Position wraparound occurred
Bv Velocity limit reached.
Ba Over current state occurred
Bh Excessive temperature
Be Excessive position error

48

Motor Hardware Limits Directly Addressed Status Bits:

Bm Real time negative hardware limit, “Left” limit.
Bp Real time positive hardware limit, “Right” limit.
Bl Historical negative hardware limit, “Left” limit.
Br Historical positive hardware limit , “Right” limit.

Motor Software Limits Directly Addressed Status Bits:

Bms Real time negative hardware limit, “Left” limit.
Bps Real time positive hardware limit, “Right” limit.
Bls Historical negative software limit, “CCW” limit.
Brs Historical positive software limit, “CW” limit.

Motor Index/Capture Directly Addressed Status Bits:

Bi(0) Rising index/capture available on the internal motor encoder.
Bi(1) Rising Index/capture report available on the external encoder.
Bj(0) Falling index/capture value available on the internal motor
 Encoder.
Bj(1) Falling index/capture value available on the external encoder.
Bx(0) Hardware index/capture input level internal motor encoder
Bx(1) Hardware index/capture input level external encoder

If action is taken based on some of the error flags, the flag will need to be reset
in order to look out for the next occurrence, or in some cases depending on how
the code is written, in order to keep from acting over and over again on the same
occurrence.

Za Reset over current state occurred
Zh Reset excessive temperature
Ze Reset excessive position error
Zl Reset historical left limit occurred
Zr Reset historical right limit occurred
Zls Reset historical left limit occurred
Zrs Reset historical right limit occurred
Zs Reset syntax error occurred
ZS Resets all above Z@ status flags, to include Bi(#) and
 Bj(#) statuses.

An example of where one would use a System Status Bit would be to replace the
TWAIT command. The TWAIT command pauses program execution until motion
is complete but interrupt subroutines will still take place. To avoid a routine to rest
on the TWAIT, a routine could be written that does much more. To start with, the
following code example would perform the same function as TWAIT:

WHILE Bt 'While trajectory
LOOP 'Loop back

Alternatively, the above routine could be augmented with code that took specific
action in the event of an index signal as is shown in the following example:

System Status

49

EIGN(W,0) 'Set all I/O to be general inputs
a=0
ZS 'Clear all faults
Ai(0) 'Arm motor’s capture register
MV VT=1000 ADT=10 'setup velocity mode, very slow
G 'start motion
WHILE Bt 'While trajectory
 IF Bi(0)==0 'Check index captured of encoder
 GOSUB(1) 'call subroutine
 ELSE
 X
 ENDIF 'end checking
LOOP 'Loop back
OFF
END
 'SUB 1: Increment a every 1 second
C1
 IF B(4,0)==0 'check Timer 0 status
 a=a+1 'updating a every second
 TMR(0,1000) 'set Timer 0 counting
 ENDIF
RETURN
END

Timer Status Bits
Timer Status Bits are true while a timer is actively counting. Timers have
resolution of 1 millisecond.

TMR(0,1000) Sets Timer Status bit 0 true for 1 second.
=TMR(3) Get the value of Timer 3.

Interrupt Status Bits
Interrupt Status Bits are true if an interrupt is enabled. It is important to note
the interrupts need to be configured before being enabled for proper operation.
Please refer to the Program Flow section of this manual for interrupt configu-
ration and their use, the below commands are examples which would directly
affect the state of the Interrupt Status Bits:

ITRE Enable interrupts handler, sets Interrupt Status Bit 15.
ITRD Disable the interrupt handler, clears Interrupt Status Bit 15.
EITR(0) Enable the highest priority interrupt, sets Interrupt Status Bit 0.
DITR(0) Disable the highest priority interrupt, clears Interrupt Status Bit 0.

I/O Status
Typically, to get an I/O port logical status the programmer would use the IN()
instructions (see appropriate section), for zero-based addressing of I/O Ports.
As with any status of the SmartMotor you can also retrieve the I/O Port status
using W() and B() Status Word commands, but not change their state.

System Status

50

System Status

G also resets
several system
state fl ags.

User Status Bits
User Bits allow for the programmer to keep track of events or status within an
application program. There functions are to be defined by the application pro-
gram of the SmartMotor. User Bits are address individually starting at 0 (zero-
based). Likewise the User Bits words are addressed starting at 0 (zero-based).

A power feature of user bits is their ability to be addressed over networks such
as COMBITRONIC or CANopen. This can also give a hosting application the
ability to cause a SmartMotor to run an interrupt routine.

The User Bits can be addressed as words also, with or without a mask to define
which bits are affected. Below are examples of commands that directly effect
the user bits:

US(0) SET User Bit 0
US(W,0,a) SET first three User Bits when a=7
UR(19) RESET User Bit 3 in second User Bit Status Word
UR(W,0) RESET all User Bits in first User Status Word
UR(W,1,7) RESET User bits 16, 17 and 18
UO(0)=a&b Sets User Bit to 1 if the bit-wise operation result is odd
 else sets it to 0
UO(W,1,7)=a Sets User bits 16,17,and 18 to the value of the lower
 three bits in a

Multiple Trajectory Support Status Bits
The SmartMotor System supports the ability to have multiple trajectory genera-
tors operating at the same time. The outputs of the generators can be manipu-
lated to affect the SmartMotor in a combination of ways, which are discussed
in other section within this manual. These trajectory generator Status Bits help
the programmer properly control the use of these generators from the applica-
tion program or over a network.

The following example exercises the trajectory Status Bits of Word 7 in a
Standard Class 5 SmartMotor:

EIGN(W,0)
ZS
MFA(1000) 'setup Gearing Profi le
MFR(2) 'Gearing Profi le for Trajectory Gen.(TG)2
O=0 'Establish actual position to Zero
PT=0 'setup target Position to Zero
VT=1000 'setup Target Velocity
ADT=100 'setup accel and decel
MP(1) 'Position Mode for trajectory generator(TG)1
G(2) 'Start TG 2, TG2 in Progress is ON
G(1) 'Start TG 1, PC=PT so TG 1 in Progress is OFF
PT=10000
G(1) 'Until PC=PT TG1 in Progress is ON
TWAIT(1)
OFF
END

51

Cam Status Bits
The Class 5 SmartMotor supports cams running in either spline and/or Linear
Interpolated Position Modes. Each individual Cam Segment can be inter-
polated in one of these two modes. While the cam is being executed, the
Cam Segment Mode bits can be interrogated to determine which mode is
presently being used for that segment. The programmer can also turn ON
and OFF Cam User Bits which are defined when each segment is written
into Cam Memory via the CTW() command. Cam User Bits offer a peri-
odic signal based on the phase of a cam, and they can be programmed
to come ON or OFF within any given section of the cam. They function
much like the industry standard Programmable Limit Switch (PLS). In a
Standard Class 5 Motor these bits reside in Status Word 8. The following
example will exercise each Cam User Bit during the programmed cam profile.

EIGN(W,0)
ZS
CTA(7,0,0) 'Add table into RAM al[0]-al[8]
CTW(0,0,1) 'Add 1st point, Cam UserBit 0 ON
CTW(1000,4000,1) 'Add 2nd point, Cam UserBit 0 ON
CTW(3000,8000,2) 'Add 3rd point, Cam UserBit 1 ON
CTW(4000,12000,132) 'Add 4th, Spline Mode, Cam Bit 2 ON
CTW(1000,16000,136) 'Add 5th, Spline Mode, Cam Bit 3 ON
CTW(-2000,20000,16) 'Add 6th point. Cam Bit 4 ON
CTW(0,24000,32) 'Add 7th point. Cam Bit 5 ON

MC 'select Cam Mode
SRC(2) 'Use the virtual master encoder.
MCE(0) 'Force Linear interpolation.
MCW(0,0) 'Use table 0 in RAM from point 0.
MFMUL=1 'Simple 1:1 ratio from virtual enc.
MFDIV=1 'Simple 1:1 ratio from virtual enc.
MFA(0) MFD(0) 'Disable virtual enc. ramp-up/ramp-
 'down sections.
MFSLEW(24000,1) 'Table is 6 segments *4000 encoder
 'counts each. Specify the second
 'argument as a 1 to force this
 'number as the output total of the
 'virtual master encoder into the cam.
MFSDC(-1,0) 'Disable virtual master (Gearing)
 'repeat.
G 'Begin move.
END 'Obligatory END

Interpolation Status Bits
The Class 5 SmartMotor supports Interpolated Position Modes (IP Modes) from
data sent over a CANopen network. The same bits supported for cams also
exist as separate set of Status Bits when operating in IP Mode. In a standard
Class 5 motor, these bits reside in Status Word 8. Assuming Animatics’ own
SMNC Multi-Axis Contouring Software is used, there is built-in support for
these Status Bits.

System Status

52

System Status

Motion Mode Status
The Class 5 SmartMotor supports many different motion modes. Keeping them
straight can present a challenge.

RMODE, RMODE(arg) Report Motion Mode

The RMODE command will report the current active motion mode. Insert an
argument to specify move generators 1 or 2. The value returned has the fol-
lowing meanings:

7 CANopen Interpolation

4 Torque

3 Velocity

1 Position

0 Null, (move generator inactive)

-2 Quadrature Follow

-3 Step/Direction Follow

-4 Cam

-5 Mixed

53

Functions of I/O Ports

What sets the SmartMotor apart from other Integrated Motors is its ability to go
beyond the control of motion, to control an entire machine. The extensive and
enormously flexible I/O is a cornerstone to that capability.

Whether it is the standard 7 points of 5V I/O located in the 15-pin D-Sub con-
nector, or the optional 10 points of Isolated 24V I/O located in a circular, M-12
connector, each point of I/O can be used configured as a Digital Input, or Digital
Output. Regardless of the I/O setting, the Analog value can also be read. The
5V I/O is push-pull, while the 24V I/O is Sourcing for machine safety reasons.

All I/O are organized into 16-bit Status Words starting at Status Word 16 of the
controller, but within I/O commands it is word 0 (zero). The I/O ports are initially
inputs at power-up; once the state is set using a discrete output command it
then controls the state of the I/O pin.

On-board I/O in any standard Class 5 motor will be in the first I/O Status Word
0. The I/O can be addressed in commands zero based starting with the first
I/O number as 0 (zero). There can be as many as 16 On-board I/O ports.
Individual motor specifications need to be reviewed to determine the number
and physical nature of the I/O. The physical nature of the I/O will address the
voltage levels and isolation characteristics of each I/O point.

Expanded I/O in a Class 5 motor will start at I/O Status Word 1, and the first
expanded I/O number is then 16. Again, individual motor specifications shall
determine the number and physical nature of the expanded I/O.

For all commands listed below:

x can be any variable a to zzz to include arrays also.
exp is the I/O Bit Number or Status Word Number. This can be
 passed in from a variable.
msk bit-wise mask to screen out certain bits
W refers to "Word", or 16 bits of information

Discrete Input Commands
x=IN(exp) Gets the state of an I/O bit & puts it in a variable.
x=IN(W,exp) Gets the state of an I/O word & puts it in a variable.
x=IN(W,exp,msk) Gets the state of an I/O word after applying a mask.

Discrete Output Commands
OS(exp) SET a single output to logic 1 or ON.
OS(W,exp,msk) SET multiple outputs at once, applying a bit mask first.
OR(#) RESET a single output to logic 0 or OFF.
OR(W,exp,msk) RESET multiple outputs at once, applying a bit mask
 first.
OUT(exp)=frm If the bit in expression to the right of the “=” is odd
 then set I/O ON, else when even or zero turn it OFF.
OUT(W,exp)=frm Set the I/O group to a value to the right of the “=”.
OUT(W,exp,msk)=frm Set the I/O group with mask.

For the 5V I/O
in the D-Sub
connector, exp can
be 0 - 6 for I/Os
0 - 6. For the 24V
I/O, exp is 16 - 25
for the ten I/Os
16 - 25.

Output Condition

=OC(exp) Individual output status; bit is 1 if output is ON and 0
 if OFF.
=OC(W,exp) Get output status within a word

Note: Inputs return OFF even if external condition is logic 1 above in the OC()
commands.

Output Fault Status Reports 24Volt I/O Only
=OF(exp) Returns the present fault state for that I/O, where:
 0 = no Fault , 1 = over current, 2 = possible shorted.

=OF(S,exp) Returns the bit mask of present Faulted I/O points.
 Where # is the 16-bit word number, 0 is the Controller
 I/O Status Word 16. If the value is ever greater than
 zero, then the I/O fault status flag (Controller Status
 Word 3) is set.

=OF(L,exp) Returns the bit mask of Latched Faulted I/O points.
 Where # is the 16-bit word number, A read of a
 16-bit word will attempt to clear the I/O words latch.

Setting an I/O point to be General Use Input Config.
EIGN(exp) Sets a given I/O Port to or back to an input with
 no function attached. In other words, to remove
 the function of travel limit from I/O port 2, execute
 the instruction EIGN(2).

EIGN(W,exp) Set all I/O in a given I/O word back to Input.

EIGN(W,exp,msk) Set all I/O in a given I/O word back to Input if
 mask bit is set.

The following example shows multiple I/O functions:

EIGN(W,0) 'deactivate default on-board I/O functions

ab[10]=W(16) 'read the status of on-board I/O.
ab[11]=IN(W,0) 'Same as above, so ab[10]=ab[11] assuming
 'I/O states didn’t change.
a=0
WHILE a<4
 ab[a]=IN(a) 'get fi rst 4 I/O states into ab[0]-ab[3]
 a=a+1
LOOP
a=0

 Functions of I/O Ports

54

WHILE a<4
 OS(a+4) 'turn ON I/O Ports 4 thru 7.
 a=a+1
LOOP

a=1
OUT(W,1)=aw[0] 'set expansion I/0 to value in aw[0]
OR(W,1,a) 'reset only I/O 16
END

EIGN(W,0) 'remove default on-board I/O functions

ab[10]=W(16) 'read the status of on-board I/O via
 'controllers status word.
ab[11]=IN(W,0) 'same as above, so ab[10]=ab[11] assuming
 'I/O states didn’t change.
a=0
WHILE a<4
 ab[a]=IN(a) 'get fi rst 4 I/O states into ab[0] thru
ab[3]
 a=a+1
LOOP
a=0

WHILE a<4
 OS(a+4) 'turn ON I/O ports 4 thru 7.
 a=a+1
LOOP

a=1
OUT(W,1)=aw[0] 'set expansion I/0 to value in aw[0]
OR(W,1,a) 'reset only I/O 16
END

Analog Functions of I/O Ports
An I/O port’s analog value can be monitored with the following commands and
the 24V I/O of a SmartMotor offer more flexibility then the 5V I/O as shown
below. All scaled readings are in millivolts. The analog reads can help diag-
nose wiring issues external to the SmartMotor, as an example; while Ports 4
and 5 are being used as RS-485 the signal bias could be monitored, or say a
5V I/O pin is being driven as an output the analog read can help find a short.

Read Push-Pull 5V I/O
INA(A,exp) Raw analog read: 10-bit res. 0-32736=0-5VDC
INA(V1,exp) Scaled voltage reading in millivolts directly where
 3456 would be 3.456VDC

24Volt I/O Sourcing
INA(A,exp) Raw analog read: 10-Bit res. 0-32736=0-41.25VDC
INA(V,exp) Scaled read 24000 to 0, where 15500 is 15.5Volts.
INA(V1,exp) Scaled read 5000 to 0, where 550 is 0.55Volts.

Functions of I/O Ports

55

For the 5V I/O
in the D-Sub
connector, exp can
be 0 - 6 for I/Os
0 - 6. For the 24V
I/O, exp is 16 - 25
for the ten I/Os
16 - 25.

56

INA(V2,exp) Scaled read 600 to 0, where 60 is 0.06Volts.
INA(S,exp) Sourcing voltage for the I/O port(when output pin).
INA(T,exp) I/O chip temperature.

Special Functions of I/O Ports
The On-board I/O ports have special functions attached as follows:

Ports 0 and 1 External Encoder Inputs, Brake Output.
Ports 2 and 3 Travel Limit Inputs, Brake Output.
Ports 4 and 5 Communications, Brake Output.
Port 6 Go function, Capture Input, Brake Output.

The Brake output function is some what unique and can be pointed to any one
of the On-board I/O or expanded I/O ports.

I/O Ports 0 and 1 – External Encoder Function Commands
Ports 0 and 1 can be wired to a external encoder, it should be noted that for
proper counting, the commands OS(), OR(), and OUT() should be avoided
for ports 0 and 1. Below are the supporting configuration commands further
information can be obtained from the ENCODER AND PULSE TRAIN section.

MF0 Set Enc. Counter to zero, put it in Quadrature Count Mode.
MS0 Set Enc. Counter to zero, put it in Step and Direction Count
 Mode (default count mode).

I/O Ports 2 and 3 – Travel Limit Inputs
Ports 2 and 3 are defaulted to travel limit inputs. They can be changed to a
general purpose I/O points by using the EIGN() commands, and then returned
to the travel limit function with the following commands:

EILN Set I/O 2 as negative over travel limit.
EILP Set I/O 3 as positive over travel limit.

I/O Ports 4 and 5 – Communications
Ports 4 and 5 maybe configured to a second communications channel. The
main communications channel is 0 and Ports 4 and 5 are associated to com-
mands for communications across channel 1. Below are the supporting con-
figuration commands examples further information can be obtained from the
Communications section.

OCHN(IIC,1,N,200000,1,8,D) Set I/O 4 and 5 for I2C mode.
CCHN(IIC,1) Close the I2C channel.
OCHN(RS4,1,N,38400,1,8,D) Set I/O 4 and 5 to RS485 mode.
CCHN(RS4,1) Close the RS485 channel.

Note: These functions are not supported on the Class 5 IP65 rated motors with
On-board 24Volt I/O.

 Functions of I/O Ports

Note that the
secondary RS-485
port is non-isolated
and not properly
biased by the
two internal 5k
Ohm pullups. It is
suitable to talk to
a bar code reader
or light curtain,
but not to cascade
motors because
of the heavy
biasing and ground
bounce resulting
from variable shaft
loading.

With the 24V I/O,
the V1 and V2
settings focus the
10bits of resolution
on the fi ner voltage
spans of 5V and
0.6V respectively.

57

Functions of I/O Ports

AniLink, using
I2C protocol
offers easy digital
and analog I/O
expansion.
Simply buy I2C
chips like the
PCF8574A, and
the PCF8591.

I/O Port 6 - Go Command, Capture Input
EISM(6) Issues G when specified I/O goes low.
EIRE Index/Registration input capture of the external encoder
 count (default setting).
EIRI Index/Registration input capture of the internal motor
 encoder count.

I/O Brake Output Commands
The Brake output function can be configured to any I/O port including the
expanded I/O ports where exp is the bit number.

EOBK(exp) Configure a given output to control an external brake.
EOBK(-1) Remove the brake function from the I/O port.

I2C I/O Expansion
I/O ports 4 and 5 can perform as an I2C port. I2C is an "Inter-IC-Communication"
scheme that is extremely simple, and yet very powerful insofar as there are
dozens of low-cost I2C devices on the market that message over I2C and
deliver so many resources. I2C chips include I/O expanders, analog input
and output, non-volitile memory, temperature sensors, etc. There is no lower
cost way of expanding the functionality of a SmartMotor than by using the I2C
resource. Learn more about this capability at the end of the next chapter on
Communications.

I/O Connection Examples

Encoders, ports,
switches and
buttons are easy to
connect directly to
the SmartMotor's
I/O pins.

58

Functions of I/O Ports

PIN Main Power Specifications: Notes: Diagram:
1 I/O – 6 “G” command or GP 25mAmp Sink or

Source
10Bit 0-5VDC A/D

Redundant
connection on I/O
connector

7W2 Combo
D-sub Connector

2 +5VDC Out 50mAmps Max. Unisolated
3 RS-232 Transmit Com(0) 115.2KBaud Max
4 RS-232 Receive Com(0) 115.2KBaud Max
5 Ground Ground Unisolated
A1 Main DC Power Positive +12.5V min., 48V Max.
A2 Ground Main Power Ground
PIN 5V I/O Connector Specifications: Notes: Diagram:
1 I/O – 0 GP or Enc. A or Step Input 25mAmp Sink/Source 1.5MHz max Enc. in. DB-15 D-sub Connector
2 I/O – 1 GP or Enc. B or Dir. Input 25mAmp Sink/Source 1.5MHz max Enc. in.
3 I/O – 2 Positive Over Travel/GP 25mAmp Sink/Source
4 I/O – 3 Negative Over Travel/GP 25mAmp Sink/Source
5 I/O – 4 GP or RS-485 A Com(1) 25mAmp Sink/Source 115.2KBaud Max
6 I/O – 5 GP or RS-485 B Com(1) 25mAmp Sink/Source 115.2KBaud Max
7 I/O – 6 “G” command or GP 25mAmp Sink/Source Redundant

connection on Main
Pwr Connector

(* All 7 I/O also have
10Bit 0-5VDC A/D)

8 Phase A Encoder Output 25mAmp Sink/Source
9 Phase B Encoder Output 25mAmp Sink/Source
10 RS-232 Transmit Com(0) 115.2KBaud Max
11 RS-232 Receive Com(0) 115.2KBaud Max
12 +5VDC Out 50mAmps Max
13 Ground
14 Ground
15 Main Power: +12.5VDC to

+48VDC
If -DE Option, Control
Power separate from
Main Power

With -DE option, this
becomes separate
control power input.

PIN Isolated 24V I/O Connector Specifications: Notes: Diagram:
1 I/O – 16 GP 150mAmps Max. M12, 12-Pin

Female End View2 I/O – 17 GP 150mAmps Max.
3 I/O – 18 GP 150mAmps Max.
4 I/O – 19 GP 150mAmps Max.
5 I/O – 20 GP 300mAmps Max.
6 I/O – 21 GP 300mAmps Max.
7 I/O – 22 GP 300mAmps Max.
8 I/O – 23 GP 300mAmps Max.
9 I/O – 24 GP 300mAmps Max.
10 I/O – 25 GP 300mAmps Max.
11 +24Volts Input +12.5V min., 48V Max. Isolated
12 GND-I/O 24V I/O ground Isolated
PIN CAN Connector Specifications: Notes: Diagram:
1 NC NC M12, 5-Pin

Female End View2 NC NC
3 GND_CAN CAN ground Isolated
4 CAN-H 1M Baud max
5 CAN-L 1M Baud max

 11 10
 9

A1 A21 2
3 4 5

 15 14 13 12 11 10 9

 8 7 6 5 4 3 2 1

"D" Type SmartMotor Connector Pinouts:

59

PIN Main Power Specifications: Notes: Diagram:
1 Control Power In 18V Min., 32V Max. Also supplies I/O M16, 4 Pin Male
2 Chassis
3 Control, Com, I/O and Amplifi er

Ground
Common Ground Unisolated

4 Amplifi er Power In +12.5V Min., 48V Max. Powers Amplifi er
Only

PIN Communications Connector Specifications: Notes: Diagram:
1 Control, Com, I/O and Amp Ground Common Ground Unisolated M12, 8-Pin

Female End View2 RS-485 B, Channel 0 115.2KBaud Max Unisolated
3 RS-485 A, Channel 0 115.2KBaud Max Unisolated
4 Encoder A+ Input/Output 1.5MHz max. as Enc or

Step input
Confi gurable as
Encoder Output

5 Encoder B- Input/Output 1.5MHz max. as Enc or
Direction input

Confi gurable as
Encoder Output

6 Encoder A- Input/Output 1.5MHz max. as Enc or
Step input

Confi gurable as
Encoder Output

7 +5V Out 250mA Max.
8 Encoder B+ Input/Output 1.5MHz max. as Enc or

Direction input
Confi gurable as
Encoder Output

PIN 24V I/O Connector Specifications: Notes: Diagram:
1 I/O – 0 GP 150mAmps Max. Configurable M12, 12-Pin

Female End View2 I/O – 1 GP 150mAmps Max. Configurable
3 I/O – 4 GP 150mAmps Max. Configurable
4 I/O – 5 GP 150mAmps Max. Configurable
5 I/O – 6 GP or Go 150mAmps Max. Configurable
6 I/O – 7 GP 150mAmps Max. Configurable
7 I/O – 8 GP or External Brake 300mAmps Max. Configurable
8 I/O – 9 GP 300mAmps Max. Configurable
9 I/O – 11 GP No Fault Output 150mAmps Max. Configurable
10 I/O – 12 GP Drive Enable Input 150mAmps Max. Configurable
11 +24Volts Out 18V Min., 32V Max.
12 Ground Common Ground Unisolated
PIN Limit Connector Specifications: Notes: Diagram:
1 +24Volts Out From Control Pwr In M12, 5-Pin

Female End View2 -Limit (Input 3) 150mAmps Max. Configurable
3 Ground Common Ground Unisolated
4 +Limit (input 2) 150mAmps Max. Configurable
5 Input 10 1M Baud max Configurable

PIN CAN Connector Specifications: Notes: Diagram:
1 NC NC M12, 5-Pin

Female End View2 NC/Optional Voltage Monitor NC DeviceNet Option
3 Ground Common Ground Unisolated
4 CAN-H 1M Baud max Unisolated
5 CAN-L 1M Baud max Unisolated

Functions of I/O Ports

"M" Type SmartMotor Connector Pinouts:

60

Functions of I/O Ports

LED Functionality:

61

There are basically 5 ways to communicate to a SmartMotor:

1) By using I/O

2) By using I2C or I2C devices (AniLink Port)

3) By messaging over RS-485 (AniLink Port)

4) By messaging over RS-232

5) By messaging over CAN - Combitronic, CANopen, DeviceNet, etc.

In early generation SmartMotors, RS-232 was the most common way to talk to
one or more SmartMotors. In high axis-count applications both electrical isola-
tion as well as RS-485 conversion to the main RS-232 port was utilized. The
pins implementing the SmartMotor's native RS-485 port share I/O functions
and are neither isolated, nor properly biased for high axis-count applications.
The native RS-485 port is used for linking a small number of SmartMotors, or
for talking to intelligent peripherals, such as Light Curtains, Bar Code Scanners,
etc.

Today, in applications utilizing more than one SmartMotor, the best choice for
communications is to link the SmartMotors together over their optional CAN
ports, and then talking to the group through any of the RS-232 or RS-485 ports
of any of the motors on the chain. The SmartMotor's new © com-
munications over CAN unify all SmartMotor data and functions in a group, mak-
ing any single motor look like a multi-axis controller from the perspective of any
of the RS-232 or RS-485 ports.

Connecting to a host
While there are a variety of options, the default mode for communicating with a
standard Class 5 SmartMotor is serial RS-232 for the main port (except for the
Class 5 IP whose main port is RS-485).

To maximize the flexibility of the SmartMotor, all serial communication ports are
fully programmable with regard to bit-rate and protocol.

There is a sixteen-byte input buffer for the primary port and another for the
secondary RS-485 port where it exists. These buffers ensure that no arriving
information is ever lost, although when either port is in data mode, it is the

Communications

When using I2C,
the SmartMotor
is always the bus
master. You cannot
communicate
between
SmartMotors via
I2C.

The CBLSM1-10
makes quick work
of connecting to
your fi rst RS-232
based SmartMotor.

The Class 5 IP65
rated motors, have
only one RS-485
and one CAN port.

Multiple
SmartMotors can
be connected
over optional CAN
ports and share
resources as
though they were
one giant, multi-
axis controller
using Animatics

©

Technology.

responsibility of the user program within the SmartMotor to keep up with the
incoming data.

By default, the primary channel, which shares a connector with the incoming
power in some versions, is set up as a command port with the following default
characteristics:

 Default: Other Options:
 Type: RS-232 RS-485
 Parity: None Odd or Even
 Bit Rate: 9600 2400 to 115200
 Stop Bits: 1 0 or 2
 Data Bits: 8 7
 Mode: Command Data
 Echo: Off On

If the cable used is not provided by Animatics, make sure the SmartMotor's
power and RS-232 connections are correct.

Buffers on both sides mean there is no need for any handshaking protocol
when commanding the SmartMotor. Most commands execute in less time
than it would take to receive the next one. Be careful to allow processes time
to complete, particularly relatively slow processes like printing to a connected
LCD display or executing a full subroutine. Since the EEPROM long term
memory is slow to write, the terminal software does employ two way communi-
cations to regulate the download of a new program.

Daisy Chaining multiple SmartMotors over RS-232
Multiple SmartMotors can be connected to a single RS-232 port as shown. For
low-power motors, size SM23165D and smaller, as many as 120 motors could
be cascaded using the daisy-chaining technique for RS-232. For independent
motion, however, each motor must be programmed with a unique address. In

Communications

62

You can create
your own RS-232
daisy chain cable
or purchase Add-A-
Motor cables from
Animatics.

Be sure to use
shielded cable to
connect RS-232
ports together,
with the shield
ground connected
to ground (pin 5) of
the PC end only.

a multiple motor system the programmer has the choice of putting a host com-
puter in control or having the first motor in the chain be in control of the rest.

ADDR= Set Motor to New Address

The ADDR= command causes a SmartMotor to respond exclusively to com-
mands addressed to it. It is separate and independent of what may be the
motor's CAN address. The range of address numbers is from 1 to 120. Once
each motor in a chain has a unique address, each individual motor will commu-
nicate normally after its address is sent at least once over the chain. To send
an address, add 128 to its value and output the binary result over the commu-
nication link. This puts the value above the ASCII character set, quickly and
easily differentiating it from all other commands or data. The address needs to
be sent only once until the host computer, or motor, wants to change it to some-
thing else. Sending out an address zero (128) will cause all motors to listen
and is a great way to send global data such as a G for starting simultaneous

motion in a chain. Once set, the address features work the same for RS-232
and RS-485 communications.

Unlike the RS-485 star topology, the consecutive nature of the RS-232 daisy-
chain creates the opportunity for the chain to be independently addressed
entirely from the host, rather than by having a uniquely addressed program in
each motor. Setting up a system this way adds simplicity because the program
in each motor can be exactly the same. If the RUN? command is the first
in each of the motor’s programs, the programs will not start upon power up.
Addressing can be worked out by the host prior to the programs being started
later by the host sending the RUN command globally.

SLEEP, SLEEP1 Assert sleep mode

WAKE, WAKE1 De-assert SLEEP

Telling a motor to sleep causes it to ignore all commands except the WAKE
command. This feature can often be useful, particularly when establishing
unique addresses in a chain of motors. The 1 at the end of the commands
specify the AniLink RS-485 port.

Communications

63

The SmartMotor
can be made to
automatically
ECHO received
characters to the
next SmartMotor in
a daisy-chain.

Fully molded Add-
A-Motor cables
make quick work
of daisy-chaining
multiple motors
over an RS-232
network.

ECHO, ECHO1 ECHO input

ECHO_OFF, ECHO_OFF1 De-assert ECHO

The ECHO and ECHO_OFF commands toggle the echoing of data input.
Because the motors do not echo character input by default, consecutive com-
mands can be presented, configuring them with unique addresses, one at
a time. If the host computer or controller sent out the following command
sequence, each motor would have a unique and consecutive address.

If a daisy chain of SmartMotors have been powered off and back on, the fol-
lowing commands can be entered into the SmartMotor Interface to address
the motors (0 equals 128, 1 equals 129, etc.). Some delay should be inserted
between commands when sending them from a host computer.

0SADDR1
1ECHO
1SLEEP
0SADDR2
2ECHO
2SLEEP
0SADDR3
3ECHO
0WAKE

Commanded by a user program in the first motor, instead of a host, the same
daisy chain could be addressed with the following sequence:

SADDR1 'Address the fi rst motor
ECHO 'Echo for host data
PRINT(#128,“SADDR2”,#13) '0SADDR2
WAIT=10 'Allow time
PRINT(#130,“ECHO”,#13) '2ECHO
WAIT=10
PRINT(#130,“SLEEP”,#13) '2SLEEP
WAIT=10
PRINT(#128,“SADDR3”,#13) '0SADDR3
WAIT=10
PRINT(#131,“ECHO”,#13) '3ECHO
WAIT=10
PRINT(#128,“WAKE”,#13) '0WAKE
WAIT=10

Communicating over RS-485
Multiple SmartMotors can be connected to a single host port by connecting
their RS-485 A signals together and B signals together and then connecting
them to an RS-485 port or an adapter to RS-232 or USB. Adapters provided
by Animatics have built-in biasing resistors, but extensive networks should
add bias at the very last motor in the chain. The RS-485 signals of the
SmartMotor share I/O functions and are not properly biased for more than just
a few SmartMotors. Proper cabling would include a shielded twisted pair for
transmission.

Communications

64

Animatics offers
adapters converting
RS-232 to RS-485
and either to USB.

Large size
23 or size 34
SmartMotors
draw so much
power that reliable
communications
often require
isolated
communications.
For such
applications,
consider using the
Animatics DIN Rail
RS-232 fanout:

CAUTION

The two communications ports RS-232 and RS-485 have enormous flexibility.
To select from the vast array of options, use the OCHN command.

OCHN(type,channel,parity,bit rate,stop bits,data bits,mode)
 Options:
 type: RS2, RS4 RS-232 or RS-485
 channel: 0, 1 or 2 0=Main, 1=AniLink
 parity: N, O or E None, Odd or Even
 bit rate: 2400,4800,9600,19200,38400,57600,115200 baud
 stop bits: 0, 1 or 2
 data bits: 7 or 8
 mode: C or D Command or Data

Here is an example of the OCHN command:

OCHN(RS4,0,N,38400,1,8,D)

If the primary communication channel (0) is opened as an RS-485 port, it will
assume the RS-485 adapter is connected to it. If that is the case then pin
G in the same connector is assigned the task of directing the adapter to be
in Transmit or Receive Mode in accordance with the motor’s communication
activity and will no longer be useful as an I/O port to the outside.

CCHN(type,channel) Close a communications channel

Use the CCHN command to close a communications port when desired.

BAUD#, BAUD(#)=frm Set BAUD rate of main port

The BAUD command presents a convenient way of changing only the bit rate
of the main channel. The number can be from 2,400 to 115,200 bps.

PRINT(), PRINT1() Print to RS-232 or AniLink channel

A variety of data formats can exist within the parentheses of the PRINT() com-
mand. A text string is marked as such by enclosing it between double quota-
tion marks. Variables can be placed between the parentheses as well as two
variables separated by one operator. To send out a specific byte value, prefix
the value with the # sign and represent the value with as many as three deci-
mal digits ranging from 0 to 255. Multiple types of data can be sent in a single
PRINT() statement by separating the entries with commas. Do not use spaces
outside of text strings because the SmartMotor uses spaces as delimiters along
with carriage returns and line feeds.

The following are all valid print statements and will transmit data through the
main RS-232 channel:

PRINT(“Hello World”) 'text
PRINT(a*b) 'exp.
PRINT(#32) 'data
PRINT(“A”,a,a*b,#13) 'all

PRINT1 Prints to the AniLink port with RS-485 protocol.

Communications

65

The Main RS-232
ports of the
SmartMotors can
be converted
to RS-485 and
isolated using
Animatics
adapters.

SILENT, SILENT1 Suppress PRINT() outputs

TALK, TALK1 De-assert Silent Mode

The SILENT mode causes all PRINT() output to be suppressed. This is useful
when talking to a chain of motors from a host, when the chain would otherwise
be talking within itself because of programs executing that contain PRINT()
commands. The TALK and TALK1 commands restore print messaging.

a=CHN(#) Communication Error Flags

Where # can be 0 or 1 for COM Channel 0 or 1.

The CHN(#) variables hold binary coded information about the historical errors
experienced by the two communications channels. The information is as fol-
lows:

Bit Value Meaning

0 1 Buffer overflow
1 2 Framing error
2 4 Command scan error
3 8 Parity error

A subroutine that printed the errors to an LCD display would look like the fol-
lowing:

C9
 IF CHN(0) 'If CHN0 != 0
 IF CHN(0)&1
 PRINT(“BUFFER OVERFLOW”)
 ENDIF
 IF CHN(0)&2
 PRINT(“FRAMING ERROR”)
 ENDIF
 IF CHN(0)&4
 PRINT(“COMMAND SCAN ERROR”)
 ENDIF
 IF CHN(0)&8
 PRINT(“PARITY ERROR”)
 ENDIF
 Z(2,0) 'Reset CHN0 errors
 ENDIF
RETURN

a=ADDR Motor’s Self Address

If the motor’s address (ADDR) is set by an external source, it may still be useful
for the program in the motor to know to what address it is set. When a motor
is set to an address, the ADDR variable will reflect that address from 1 to 120.

Getting data from RS-232/RS-485 port using Data Mode
If a Communications port is in Command Mode, then the motor will simply
respond to arriving commands it recognizes. If the port is opened in Data

Communications

66

Mode, however, then incoming data will start to fill the 16-byte buffer until it is
retrieved with the GETCHR command.

a=LEN Number of characters in RS-232 buffer
a=LEN1 Number of characters in RS-485 buffer
a=GETCHR Get character from RS-232 buffer
a=GETCHR1 Get character from RS-485 buffer

The buffer is a standard FIFO (First In First Out) buffer. This means that if the
letter A is the first character the buffer receives, then it will be the first byte
offered to the GETCHR command. The buffer exists to make sure that no data
is lost, even if the program is not retrieving the data at just the right time.

The GETCHR buffer will stop accepting characters if the buffer overflows, and
RLEN will stop incrementing. Also, the overflow bit will be set for that serial
channel. When the buffer is empty, GETCHR will return a value of (negative 1.)
If GETCHR is assigned to a byte ab[], then the value gets cast from the range
-1 to +255 to the signed range -128 to +127. This causes -1 (empty buffer) to
have the same value as char 255, since 255 gets cast to -1. It is recommended
to assign GETCHR to a word or long to perform comparisons.

The LEN variable holds the number of characters in the buffer. A program
must see that the LEN is greater than zero before issuing a command like
a=GETCHR. Likewise, it is necessary to arrange the application so that, over-
all, data will be pulled out of the buffer as fast as it comes in.

The ability to configure the communication ports for any protocol as well as
to both transmit and receive data allows the SmartMotor to interface to a vast
array of RS-232 and RS-485 devices. Some of the typical devices that would
interface with SmartMotors over the communication interface are:

Other SmartMotors
Bar Code Readers
Light Curtains
Terminals
Printers

The following is an example program that repeatedly transmits a message to
an external device (in this case another SmartMotor) and then takes a number
back from the device as a series of ASCII letter digits, each ranging from 0 to 9.
A carriage return character will mark the end of the received data. The program
will use that data as a position to move to.

AT=500 'Preset acceleration.
VT=1000000 'Preset velocity.
PT=0 'Zero out position.
O=0 'Declare origin
G 'Servo in place
OCHN(RS2,0,N,9600,1,8,D)
PRINT(“RPA”,#13)
C0
 IF LEN 'Check for chars
 a=GETCHR 'Get char

Communications

67

68

Communications

 IF a==13 'If carriage return
 G 'Start motion
 PT=0 'Reset buffered P to zero
 PRINT(“RP”,#13) 'Next
 ELSE
 PT=PT*10 'Shift buffered P
 a=a-48 'Adjust for ASCII
 PT=PT+a 'Build buffered P
 ENDIF
 ENDIF
GOTO(0) 'Loop forever

The ASCII code for zero is 48. The other nine digits count up from there so
the ASCII code can be converted to a useful number by subtracting the value
of 0 (ASCII 48). The example assumes that the most significant digits will be
returned first. Any time it sees a new digit, it multiplies the previous quantity by
10 to shift it over and then adds the new digit as the least significant. Once
a carriage return is seen (ASCII 13), motion starts. After motion is started, P
(Position) is reset to zero in preparation for building up again. P is buffered so
it will not do anything until the G command is issued.

The SmartMotor has a wealth of data that can be retrieved over the Combitronic,
RS-232, and RS-485 ports simply by asking. Data and status reporting com-
mands can be tested by issuing these report commands from any hosting appli-
cation. Using SMI Terminal window as the host, (see the example below), the
command is shown on the left and the SmartMotor's response is shown in the

69

Communications

middle. The SMI host software uses these commands to implement the Motor
View window and Monitor View tools. Data that does not have direct report
commands can be retrieved either of two ways, by embedding the variable in
a PRINT command, or by setting a variable equal to the parameter and then
reporting the variable.

The report commands are listed alphabetically in Appendix C.

It is important to note that Combitronic reports will only work if the CAN network
is wired to each motor, and CAN addresses and baud rate configured. Unique
addresses should be assigned to each motor with the CADDR command. All
motors on the same CAN network must be configured to the same baud rate
with the CBAUD command for proper operation.

CAN Communications
The Class 5 SmartMotor will support different protocols over the CAN port if
equipped. CANopen and DeviceNet are popular industrial networks that utilize
CAN. If a master is communicating to a group of SmartMotors as slaves under
either of these standard protocols, the Combitronic protocol can still function,
undetected by the CANopen or DeviceNet master. A CAN network must have
all devices set to the same baud rate to operate. The following commands
setup and support the CAN port of the motor.

CADDR=frm

Where Number may be from 1 to 127. The setting is stored in the EE, but to
take effect the user must cycle power to the motor.

CBAUD=frm

Where frm may be one of the following: 1000000; 800000; 500000; 250000;
125000; 100000; 50000; 20000; 10000

=CAN

The reports a bit map of errors that can happen over the CAN bus where:

 Bit Description
 0 CAN bus Pwr Okay(DeviceNet Option)
 1 Device is OFFLINE, DeviceNet DupMac Error, bus-OFF
 2 reserved
 3 reserved
 4 User attempted to do Combitronic read from broadcast address
 5 Combitronic debug, internal issue.
 6 Timeout (Combitronic Client)
 7 Combitronic server ran out of buffer slots.
 8 Errors reached warning level
 9 Receive Errors reached warning level
 10 Transmit Errors reached warning level
 11 Receive Passive Error
 12 Transmit Passive Error

70

 13 Bus Off Error
 14 RX buffer 1 overflowed
 15 RX buffer 0 overflowed

CANCTL(action, value)

Commands execute based on the action argument to control CAN functions.

Action = 0: Timeout motor action. What the motor does when a timeout in
DeviceNet occurs. (DeviceNet firmware only.) Value is 0-9.

0=servo off

1=smooth stop

2=hard stop

3=motor reset

4=no action

5 to 9= GOSUB(value) (routines C5-C9)

Action = 1: Reset the CAN MAC and all errors. Resets CANopen stack or
DeviceNet stack depending on firmware type. Value is ignored.

Action = 2: Reset the activity of the CANopen clock sync via the high-resolu-
tion timestamp. Value is ignored.

Action = 3: Reset the CANopen interpolation buffer via user command. Value
is ignored.

Action = 4: Force entry into CANopen Interpolation Mode via user command.
Value is 7 to force Interpolation Mode.

Action = 5: Set timeout for Combitronic. Value is in milliseconds, and defaults
to 30 for 30 milliseconds.

TM Communications

The single most unique feature of SmartMotors are their ability to communicate
with each other and share resources using Animatics’ own Combitronic technol-
ogy.

Equipped with an optional CAN port, SmartMotors can not only act as slaves
to a CANopen master, but they can also talk to each other. Even while on the
same CAN bus, Combitronic communications occur undetected by a CANopen
master.

If you have multiple SmartMotor servos, and even if you don't care to com-
municate with the group over CANopen, you will certainly still want to acquire
the CAN port option and let them communicate with each other using the
Combitronic feature.

For the greatest possible simplicity, Combitronic communications occur auto-
matically, simply by reference. Take virtually any SmartMotor parameter, add a

Communications

71

colon, followed by a number representing the address of another SmartMotor
on the same CAN bus, and that parameter will belong to that SmartMotor. For
example, imagine you have three SmartMotors linked together and set with
addresses 1, 2 and 3. The following line of code, written in SmartMotor number
2 for example, would set a target position in that same SmartMotor:

PT=4000 ‘Set Target Position in local motor

This line of code below, written in SmartMotor number 2, or any of the three
motors for that matter, would set a target position in SmartMotor number 3:

PT:3=4000 ‘Set Target Position in motor 3

The Combitronic global address for all SmartMotors is zero, so the following
line of code, written in ANY SmartMotor would set the target position in ALL
SmartMotors, at the same time:

PT:0=4000 ‘Set Target Position in all motors

The following line of code could be written in motor number 1 and set variable
a in motor number 2 equal to an I/O of motor number 3:

a:2=IN(0):3 ‘Set variable in 2 to I/O of 3

The possibilities are as endless as is the associated convenience and effi-
ciency. The Combitronic technology creates a true parallel processing environ-
ment, but with unparalleled simplicity. The speed of program execution within
the SmartMotor, combined with the speed of the Combitronic communications,
and the vastness of the SmartMotor's programming language often result in
the elimination of the need for a PLC (programmable logic controller). Sensors
and valves can be connected to the closest SmartMotor in the machine and
be available to the program of any SmartMotor on the network. HMIs (human-
machine-interfaces) can connect to any one or more of the SmartMotor's
RS-232 or RS-485 ports and provide visibility into the entire network. The size
and complexity of the machine collapses to the point where in many cases,
there is no longer even a cabinet. The machine builder is spared the traditional
bulk, the failure modes, the wiring time and complexity, and the COST of sepa-
rate servo controllers, servo amplifiers, and PLCs.

Bear in mind that while Combitronic communications are very fast, program
execution is also very fast, so if a tight loop is written with a Combitronic trans-
action inside, you will flood the CAN bus with data, which in the extreme, can
slow all operations of all SmartMotors on the chain.

It is simple to avoid this problem. If, for example, motor 1 needs to "poll"
the state of an input on motor 2, then instead of writing a tight loop with a
Combitronic command in it, simply write a tight loop in motor 2 that would exer-
cise a Combitronic transmission ONLY when that input changes state. The
Combitronic command issued in motor 2 could be to set a variable in motor
1 in the event of the input state change. The program in motor A could then
simply poll its own internal variable. This way, the actual polling activity is not
hammering the CAN bus.

A key to powerful programing in SmartMotors is to exploit the parallel process-
ing for throughput without needlessly wasting throughput through unnecessary
polling over the Combitronic interface.

Communications

Tight loops with
Combitronic
commands can
fl ood the CAN
bus with data and
impare the function
of a SmartMotor
network. Structure
programs to tread
lightly on the CAN
infrastructure for the
best performance.

CAUTION

72

It is interesting to note that global Combitronic transmissions are especially fast
because they do not involve node responses at the protocol level. This fact can
be leveraged to speed applications by having certain motors globally broadcast
low-frequency, but relevant state changes. For example, if a machine had a
"door" and that door could be Open or Closed. The motor performing that func-
tion could set every motor's variable "d" equal to 1 when the door is open and
0 when the door is closed like this: d:0=1 and d:0=0.

Each program in each motor can simply be checking its own variable "d" for the
status of the door. By this technique, the programmer has created a new type
of variable, a "global" variable.

A further clever way to program a network of SmartMotors is to write ONE pro-
gram and download that same program to all motors. Then, have the program
first look to the motor's CAN address, and execute only that portion of the mas-
ter program that pertains to that motor address. This makes supporting a large
network much easier because there is only one program. Make sure "global"
variables as created in the previous example are all unique.

One final step can be taken to further simplify the support of a SmartMotor
based machine, and that is to allocate a small group of I/O, or the analog value
of an input, to be unique in each motor position by virtue of the wiring leading
to that motor. Then have the program set its CAN address in accordance with
that unique input status. With this technique, a spare SmartMotor with the
master program could replace any failed unit in the system without any special
configuration. Even its own address would be automatically set.

CANopen - Can Bus Protocol
CANopen is an industrial CAN bus protocol supported in the standard Class 5
firmware. The protocol supports CIA 402 profile for drives and motion devices.
The hosting controller can use an EDS file supplied by Animatics that will eas-
ily allow for the control of the SmartMotor over the CANopen network. One of
the more powerful features of the CIA 402 profile is Interpolation Mode which
is supported by both the Class 5 SmartMotor and Animatics’ own coordinated
motion software SMNC, and Integrated Motion DLL. The Integrated Motion
DLL by itself can offer a host application developer the means to control
SmartMotors using CANopen.

DeviceNet - Can Bus Protocol
DeviceNet is an industrial CAN bus protocol supported in the SmartMotor with
optional firmware. The protocol supports CIP (Common Industrial Protocol)
Profile for a Position Controller. The hosting controller can use an EDS file sup-
plied by Animatics that will easily allow for the control of the SmartMotor using
DeviceNet.

I2C Communications
Maybe the best kept secret of the SmartMotor is its open I2C communications
capabilities and the profound potential they have to expand SmartMotor capa-
bilties.

Communications

73

The I2C port is comprised of two signals, the two referred to as ports 4 and 5.
These pins are most often shared with the SmartMotor's RS-485 port and a
choice must be made between I2C and RS-485 communications.

OCHN(IIC,1,N,baud,1,8,D)

 IIC – the literal syntax IIC to tell what kind of communication this is.

 1 – the literal value 1, since this is the location of that port.

 N – literal, not relevant to IIC

 baud – the bit rate for communication with the IIC device.

 1 – literal, not relevant to IIC

 8 – literal, not relevant to IIC

 D – literal: always in data mode for IIC communication.

CCHN(IIC,1) - closes the channel.

PRINT1(arg1, arg2, … ,arg_n)

Where arg is:

IIS – Start or restart an IIC command. For IIC devices that require a restart,
simple call the IIS command a second time within a print.

IIP – stoP an IIC command.

IIGn – get n bytes from the IIC channel (requires the previous commands to
have provided whatever addressing or command is required for the device to
start sending. The G argument will provide the right number of clock intervals
to ‘pump’ the IIC device to get the data.

RGETCHR1, Var=GETCHR1

Gets the data returned from the IIC device (if available). The data is always
in unsigned byte values. So it is advised to assign the data to a 16 or 32-bit
register first in order to test for special cases.

For example, the value will be 0-255 for normal data representing all possible
values for the byte. If the value from the GETCHR1 command is -1, that indi-
cates the buffer was empty.

RLEN1, Var=LEN1

Gets the amount of bytes in the receive buffer.

There are I2C devices that perform dozens of purposes including non-volitile
memory, high resolution AtoD and DtoA, analog and digital I/O expansion to
name just a few. The following example shows how one would utilize a small
EEPROM memory device known as the 24FC512. Only the initialization part
runs at power-up. Thereafter, subroutines 100 and 200 can be called to write

Communications

74

or read data into the EEPROM.

'''
' Class 5 I2C EEPROM Test 00
' Sept 10, 2009
' I2C test for 24FC512 EEPROM on Personality Module
' Address 1010 001 x
'''
SADDR1
ECHO
C0
OFF OCHN(IIC,1,N,200000,1,8,D) 'Init I/Os 4 and 5 as IIC port
PRINT(#13,"IIC Port Initialized",#13)
PRINT(#13)
END

C100 'Write variable a at pointer p
 al[0]=a
 al[1]=p
 PRINT(#13)
 PRINT("Load ",al[0]," at pos ",p,#13)
 PRINT1(IIS,#160,#ab[5],#ab[4],#ab[3],#ab[2],#ab[1],#ab[0],I
IP)
 PRINT("Load bytes: ",ab[3],", ",ab[2],", ",ab[1],",
",ab[0],#13)
 PRINT(#13)
RETURN

C200 'Read into variable a at pointer p
 al[1]=p
 PRINT1(IIS,#160,#ab[5],#ab[4],IIP) 'Write memory pointer
 WAIT=1 'Must have small wait to give the write time it needs
 PRINT1(IIS,#161,IIG4,IIP) 'Setup to read four bytes
 WAIT=1 'Must have small wait to give the write time it needs
 ab[3]=GETCHR1
 ab[2]=GETCHR1
 ab[1]=GETCHR1
 ab[0]=GETCHR1
 a=al[0]
 PRINT(#13)
 PRINT("Read bytes: ",ab[3],", ",ab[2],", ",ab[1],",
",ab[0],#13)
 PRINT("Read ",a," at pos ",p,#13)
 PRINT(#13)
RETURN

Communications

75

The SmartMotor includes a very high quality, high performance brushless ser-
vomotor with extremely powerful rare earth magnets and a stator (the outside,
stationary part): a densely wound, multi-slotted electromagnet.

Controlling the position of a brushless servo’s rotor with only electromagnetism
working as a lever is like pulling a sled with a rubber band. Accurate control
would seem impossible.

The parameters that make it all work are found in the PID (Proportional,
Integral, Derivative) control section. These are the three fundamental coef-
ficients to a mathematical algorithm that intelligently recalculates and delivers
the power needed by the motor 8,000 times per second. The input to the PID
control is the instantaneous desired position minus the actual position, be it at
rest, or part of an ongoing trajectory. This difference is called the position error.

The Proportional parameter of the PID control creates a simple spring constant.
The further the shaft is rotated away from its target position, the more power
is delivered to return it. With this as the only parameter, the motor shaft would
respond just as the end of a spring would if it was grabbed and twisted.

If the spring is twisted and let go, it will vibrate wildly. This sort of vibration is
hazardous to most mechanisms. In this scenario, a shock absorber is added
to dampen the vibrations, which is the equivalent of what the Derivative param-
eter does. If a person sat on the fender of a car, it would dip down because
of the additional weight based on the constant of the car’s spring. It would
not be known if the shocks were good or bad. However, if someone jumped
up and down on the bumper, it would quickly become apparent whether the
shock absorbers were working or not. That’s because they are not activated
by position but rather by speed. The Derivative parameter steals power away
as a function of the rate of change of the overall PID control output. The
parameter gets its name from the fact that the derivative of position is speed.
Electronically stealing power based on the magnitude of the motor shaft’s vibra-
tion has the same effect as putting a shock absorber in the system, and the
algorithm never goes bad.

Even with the two parameters working, a situation can arise that will cause
the servo to leave its target created by “dead weight”. If a constant torque is
applied to the end of the shaft, the shaft will comply until the deflection causes
the Proportional parameter to rise to the equivalent torque. There is no speed
so the Derivative parameter has no effect. As long as the torque is there, the
motor’s shaft will be off of its intended target.

That’s where the Integral parameter comes in. The Integral parameter mounts
an opposing force that is a function of time. As time passes and there is a
deflection present, the Integral parameter will add a little force to bring it back
on target with each PID cycle. There is also a separate parameter (KL) used
to limit the Integral parameter’s scope of what it can do so as not to overreact.

Each of these parameters has its own scaling factor to tailor the overall perfor-
mance of the PID control to the specific load conditions of any one particular
application.

 PID Control

While the
derivative term
usually acts to
dampen instability,
this is not the true
defi nition of the
term. It is possible
to cause instability
by setting the
derivative term too
high.

The PID filter is
off during Torque
Mode.

The scaling factors are as follows:

 KP Proportional

 KI Integral

 KD Derivative

 KL Integral Limit

Tuning the PID Control
The task of tuning the PID control is complicated by the fact that the parameters
are so interdependent. A change in one can shift the optimal settings of the
others. The automatic utility makes all of the settings easy, but it still may be
necessary to know how to tune a servo.

When tuning the motor it is useful to have the status monitor running which will
monitor various bits of information that will reflect the motors performance.

 KP=exp Set KP, proportional coefficient

 KI=exp Set KI, time-error coefficient

 KD=exp Set KD, damping coefficient

 KS=exp Set KS, derivative coefficient

 KL=exp Set KL, time-error coefficient limit

 F Update PID control

The main objective in tuning a servo is to get KP as high as possible, while
maintaining stability. The higher the KP, the stiffer the system and the more
under control it is. A good start is to simply query what the beginning point
is (RKP) and then start increasing it 10% to 20% at a time. It is a good idea
to start with KI equal to zero. Keep in mind that the new settings do not take
effect until the F command is issued. Each time KP is raised, try to physically
destabilize the system by bumping or twisting it or have a program loop cycling
that invokes abrupt motions. As long as the motor always settles to a quiet rest,
keep raising KP. Of course if the SMI Tuning Utility is being used, it will employ
a step function and show more precisely what the reaction is.

As soon as the SmartMotor starts to find it difficult to maintain stability, find the
appropriate derivative compensation. Move KD up and down until the value is
found that gives the quickest stability. If KD is too high, there will be a grinding
sound. It is not really grinding, but it is a sign to go the other way. A good tune
is not only stable, but reasonably quiet. The level of noise immunity in the KD
term is controlled by KS.

The derivative term KD requires estimating the derivative of the position error.
While the simplest method is a backward difference, KS=0, this is inherently
noisy. The choices of KS=1, 2 and 3 provide increasing levels of noise immu-
nity at the expense of slightly increasing latency in the estimation. Since higher
latency will typically result in lower achievable PID loop gains, choose the best
compromise between smoothness and tracking performance. The default set-

PID Control

76

Refer to the section:
SMI Advanced
Functions to learn
more about the SMI
Tuner and how it
can help tune the
SmartMotor.

In most cases, it
is unnecessary to
tune SmartMotors.
They are factory
tuned, and stable
in virtually any
application.

ting is KS=1.

After optimizing KD, it may be possible to raise KP a little more. Keep going
back and forth until there’s nothing left to improve the stiffness of the system.
After that it’s time to take a look at KI.

KI, in most cases, is used to compensate for friction; without it the SmartMotor
will never exactly reach the target. Begin with KI equal to zero and KL equal
to 1000. Move the motor off target and start increasing KI and KL. Keep KL
at least ten times KI during this phase.

Continue to increase KI until the motor always reaches its target, and once
that happens add about 30% to KI and start bringing down KL until it hampers
the ability for the KI term to close the position precisely to target. Once that
point is reached, increase KL by about 30% as well. The Integral term needs
to be strong enough to overcome friction, but the limit needs to be set so that
an unruly amount of power will not be delivered if the mechanism were to jam
or simply find itself against one of its ends of travel.

EL=expression Set Maximum Position Error
The difference between where the motor shaft is supposed to be and where it is
actually positioned, is appropriately called the “position error”. The magnitude
and sign of the error are delivered to the motor in the form of torque after it is
put through the PID control. The higher the error, the more out of control the
motor will become. Therefore, it is often useful to put a limit on the allowable
error after which time the motor will be turned off. Which is why the EL com-
mand is exists. It defaults to 1,000, but can be set from 0 to 262,143. This
feature can be disabled by setting EL=-1.

There are still more parameters that can be utilized to reduce the position error
of a dynamic application. Most of the forces that aggravate a PID loop through
the execution of a motion trajectory are unpredictable, but there are some that
can be predicted and further eliminated preemptively.

KG=expression Set KG, Gravity Offset Term

The simplest of these is gravity. Why burden the PID loop with the effects
of gravity in a vertical load application if it can simply be weeded out? If in a
particular application motion would occur with the power off due to gravity, a
constant offset can be incorporated into the PID control to balance the system.
KG is the term. KG can range from -8,388,608 to 8,388,607. To tune KG, sim-
ply make changes to KG until the load equally favors upward and downward
motion.

KV=expression Set KV, Velocity Feed Forward

Another predictable cause of position error is the natural latency of the PID
loop itself. At higher speeds, because the calculation takes a finite amount of
time, the result is somewhat “old news”. The higher the speed, the more the
actual motor position will slightly lag the trajectory calculated position. This
can be programmed out with the KV term. KV can range from zero to 65,535.
Typical values range in the low hundreds. To tune KV simply run the motor at
a constant speed, if the application will allow, and increase KV until the error

PID Control

77

KV and KA have
no effect in Sleep
Modes or Follow
Modes.

gets reduced to near zero and stays there. The error can be seen in real time
by activating the Monitor Status window in the SMI program.

KA=expression Set KA, Acceleration Feed Forward

Force equals mass times acceleration. If the SmartMotor is accelerating a
mass, it will be exerting a force during that acceleration. This force will disap-
pear immediately upon reaching the cruising speed. This momentary torque
during acceleration is also predictable and need not aggravate the PID control.
Its effects can be programmed out with the KA term. KA can range from zero to
65,535. It is a little more difficult to tune KA, especially with hardware attached.
The objective is to arrive at a value that will close the position error during the
acceleration and deceleration phases. It is better to tune KA with KI set to zero
because KI will address this constant force in another way. It is best to have
KA address 100% of the forces due to acceleration, and leave the KI term to
adjust for friction.

The PID rate of the SmartMotor can be slowed down.

PID1 Set highest PID update rate, 16 KHz

PID2 Divide highest PID update rate by 2, default of 8 KHz

PID4 Divide highest PID update rate by 4, 4 KHz

PID8 Divide highest PID update rate by 8, 2 KHz

The trajectory and PID control calculations occur within the SmartMotor at the
“sample rate” selected by the PIDn command. Although 16 KHz is available, 8
KHz corresponding to PID2 is the default, providing a reasonable compromise
between very good control and the SmartMotor application program execution
rate. This program execution rate can be increased by reducing the PID rate
using PID4 and PID8 in applications where the lower “sample rate” still results
in satisfactory control.

If the PID rate is lowered, keep in mind the “sample rate” is the basis for velocity
values, acceleration values and the PID coefficients. If the rate is cut in half,
expect to do the following to keep all else the same:

Double Velocity

Increase Acceleration by a factor of 4

Current Limit Control
AMPS=expression Set Current Limit, 0 to 1023

In some applications, if the motor is misapplied at full power, the attached
mechanism could be damaged. It can be useful to reduce the maximum
amount of current available thus limiting the torque the motor can produce. Use
the AMPS command with a number, variable, or expression within the range
of 0 to 1023, where the value 1023 corresponds to the maximum commanded
torque to the motor. Current is controlled by limiting the maximum PWM duty
cycle which for this reason will reduce the maximum speed of the motor as well.
The AMPS command has no effect in Torque Mode.

PID Control

78

A reduction in the
PID rate can result
in an increase in
the SmartMotor™
application program
execution rate.

Providing proper
care is taken to
keep the PID filter
stable, the PID#
command can be
issued on-the-fly.

79

Follow Mode (Electronic Gearing)

Follow Mode allows a motor to follow a standard TTL quadrature external en-
coder input signal, or internal clock, at a user defined ratio.

By default, Follow Mode runs continuously at a ratio of 1:1 in terms of input
counts to distance moved.

The user can freely select either the external encoder or fixed rate internal
clock as the input source. The fixed rate internal clock runs at 8000 counts
per second by default, but can be influenced by the PID commands.

SRC(exp) Select the input source used in Follow and Cam Modes.

The SRC() command can allow the SmartMotor to use the many advanced
following and camming functions even without an external encoder input.
Values for exp:

1 external encoder (-1 inverts direction)

2 time-base at PID rate (-2 inverts direction)

MFR Config. A & B inptus to Quadrature Mode and sel. Follow Mode.

The Mode Follow Ratio command configures the A and B inputs of the motor
to be read as standard quadrature inputs and puts the SmartMotor in Follow
Mode.

MSR Config. A & B inputs to Step/Dir. Mode and sel. Follow Mode.

The Mode Step Ratio command configures the A and B inputs of the motor
to be read as standard Step and Direction inputs and puts the SmartMotor in
Follow Mode.

MF0 Exit Follow Mode

MS0 Exit Step/Direction Follow Mode

Be careful if using the ENC1 command that you do not inadvertently change the
operation of the encoder with one of these commands. If it is required to use
an alternate encoder source for Follow Mode and at the same time use ENC1,
then choose the version of the above commands to match your encoder type
for the ENC1 command.

MFMUL=, MFDIV= Set Follow Mode Ratio

The internal mathematics work best by describing the follow ratio in terms of
a fraction of two integers. Choose MFMUL= and MFDIV= to create the fol-
lowing ratio if it is not 1:1. Note that MFR or MSR must be issued after any
changes to MFMUL= or MFDIV=

MFMUL=frm 'Multiplier applied to follow ratio.
MFDIV=frm 'Divisor applied to follow ratio.

Advanced Motion

80

Advanced Motion

MFA(exp1[,exp2]) Ascend ramp to sync. ratio from ratio of 0.

Exp1 Setting from 0 to 2,147,483,647. Set to 0 to disable. By
 default, it is disabled.

Exp2 Is optional and specifies the meaning of exp1. Values of
 exp2: 0 for designating input units (master units) and to 1 for
 designating distance traveled (slave units).

MFD(exp1[,exp2]) Descend ramp from ratio to ratio of 0

Exp1 Setting from 0 to 2,147,483,647. Set to 0 (default) to disable.

Exp2 Is optional and specifies the meaning of exp1. Values of
 exp2: 0 for designating input units (master units), 1 for
 designating distance traveled (slave units).

MFSLEW(exp1[,exp2]) Slew at ratio for a fixed distance

Exp1 Setting from -1 to 2,147,483,647. Set to -1 (default) to disable.
 When disabled, Follow Mode runs at ratio continuously.

Exp2 Is optional and specifies the meaning of exp1. Values of
 exp2: 0 for designating input units (master units), 1 for
 designating distance traveled (slave units).

The following example shows a profile driven by an incoming encoder signal
where in addition to following the incoming encoder, the SmartMotor will per-
form an acceleration into the following relationship, and after a prescribed dis-
tance, perform a deceleration back to rest. In the first graph below, the master
encoder signal is along the horizontal axis of the graph, and the gear ratio is
the vertical axis of the graph. This demonstrates that 'area under the curve' is
the slave position. the second graphs shows the slave position as a function
of master position. In this example, MFA, and MFD are commanded in slave
units, and MFSLEW is commanded in master units. These 3 commands can
accept either master or slave units according to the second argument as a 0
or 1, respectively. The firmware automatically calculates the move accordingly.

MFMUL=300
MFDIV=100
MFA(300,1) 'Slave moves 300 counts over ascend
MFD(600,1) 'Slave moves 200 counts over descend
MFSLEW(200,1) 'Slave maintains sync ratio for 300 counts
MFR
G

Changed MF val-
ues do not take
effect until after the
next G command.

81

Advanced Motion

MFSDC(exp1,exp2) Dwell at 0 ratio for input distance

Exp1 Set from 0 to 2,147,483,647 to specify the number of master
 counts the slave dwells at zero ratio. Set to -1 (default) to dis
 able. When disabled, Follow Mode runs at ratio continuously.

Exp2 Set to 0 to repeat the gearing profile in the same direction. Set
 to 1 to repeat the gearing profile in the opposite direction.

A setting of 0 for Exp 2 is typical for feeding labels in label
applications and a setting of 1 is typical for traverse-and-takeup
spool winding applications.

The next example demonstrates the use of MFSDC. It is a spool winding pro-
gram that will perform a following profile accross the spool, dwell at the end for
a specific span of input distance and then reverse the profile back to the original
end of the spool for another dwell. The motion will go back and forth with dwells
at each end until another MFSDC command is issued with Exp1 equal to -1
followed by a G command, or an X or S is issued.

Any value other
than -1 for MFSDC
Exp1 command
will cause the
motion profi le
to continuously
dwell and repeat.
Reissue the
command with
Exp1 equal to -1 to
stop the repetitive
motion.

CAUTION

82

Advanced Motion

a=1000 'ascend and descend distance in slave counts
b=200000 'spool width in slave counts
c=4000 'one rev of spool in master counts
s=b-(a*2) 'calculate MFSLEW distance
m=1000 'gear ratio multiplier
d=1000 'gear ratio divisor
MFMUL=m 'set ratios for gearing
MFDIV=d
MFA(a,1) 'set ascend into ratio distance
MFD(a,1) 'set descend out of ratio distance
MFSLEW(s,1) 'set slew dis. btwn the accel and decel points
MFSDC(c,1) 'set dwell for "c" cnts, auto rev. after dwell
MFR 'set mode to electronic gear ratio
G 'start follwing the external master encoder

Cam Mode
The Class 5 SmartMotor supports motion profiles based on data stored in a
cam table. The cam table can reside in EEprom memory, or in the user array.
Multiple tables can be created in the EEprom non-volatile storage. The motor
position is interpolated between each data point. This interpolation can be
specified as linear, spline that is not periodic, and spline that is periodic.

Cam Mode has the ability to apply sophisticated shaping and selection of the
encoder input source using Follow Mode. Cam mode uses MFMUL and MFDIV
to set the ratio incoming master counts. Through the use of the SRC command
either the external encoder or a fixed-rate ‘virtual encoder’ can be used as the
input source to the cam. This fixed-rate encoder also works through the Follow
Mode, so the actual rate into the cam can be set. The speed of the virtual
encoder is equivalent to the PID rate. In other words for a Class 5 motor at its
default PID rate of 8000 Hz, the virtual encoder will see 8000 encoder counts
per second.

Cam Mode Commands

CTE(exp) Erase tables in EE memory starting at the value specified.

To erase all EE tables, choose CTE(1). By choosing a number higher than
1, lower table numbers can be preserved. If for example there were 3 tables
stored, CTE(2) would erase table 2 and 3, but not table 1. CTE(0) is not
defined.

CTA(exp1,exp2[,exp3]) Add a Cam table.

The CTA command is what you use to setup a table to either EEprom memory,
or the data variable space in preparation for writing the table with teh CTW
command.

Exp1 Specifies the number of points in the table.

Exp2 Specifies the encoder distance between each point. If exp2 is
 set to 0, then the distance is specified per data record.

Cam tables can be
written to EEprom
memory that stays
when power is
removed, or to
the variable data
space, which goes
away with loss of
power, but is more
dynamically flexible.

Note that the G
command will
assume the cycle
starts at one end of
the spool.

83

Advanced Motion

Exp3 Is optional and specifies if this is a table in user variables, or
 EE. By default if exp3 is omitted, then EE is chosen. If exp3
 is a 0, then the user array location is chosen (al[0] through
 al[50].) Only one table can exist in the user variables. Up to
 10 tables (numbered 1 through 10) can exist in EE location.

CTW(exp1[,exp2][,exp3]) Write a Cam table

The CTW command writes to the table addressed by the most recent CTA
command. CTW writes to either the EE stored tables, or the user array
stored tables.

Exp1 Is the position coordinate of the motor for that data point.
 Please set the first point in the table to 0 to avoid confusion.
 When the table is run, the currently commanded motor
 position seamlessly becomes the starting point of the table.
 By keeping the first point of the table at 0, it is easier to
 realize that all of the data points are relative to this starting
 point.

Exp2 Is not required if this is a fixed-length cam table (specified in
 the CTA command.) If this cam table was specified as
 variable length in the CTA command, then exp2 is required
 for each data point. Exp2 represents the absolute distance
 of the encoder source beginning from the start of the table.
 For reasons similar to exp1, exp2 should also be 0 for the
 first data point specified.

Exp3 Is completely optional; this is used to specify additional
 information about the segment between the specified point
 and the previous point. The details of this are not covered
 here, and omitting this point will provide reasonable defaults.

When loading Cam tables, it is important to be mindful of the table capacity.
When a cam table is stored in user array memory (al[0]-al[50]), 52 points can
be stored as fixed-length segments. 35 points are possible when variable
length segments are used.

When tables are written to EEprom memory, significantly more data can be
written. For fixed length cams, there is space for at least 750 points. For
variable length cam segments, at least 500 points can be written.

MCE(arg) Cam table interpolation mode

The MCE(arg) command sets up the Cam function and defines the behavior
based on the following arguments:

0 Force linear motion for all sections

1 Spline mode with non-periodic data at ends of table

2 Spline mode with periodic data wrapped at ends of table

More typically the
actual Cam Table
would not be part
of the program that
executes the mode.
SMI tools are avail-
able to facilitate
Cam Table genera-
tion.

84

Advanced Motion

MCW(arg1,arg2) Cam table starting point

The MCW() command determines where to start the Cam function with arg1
being the table number and arg2 being the starting record, being as early as
record 0 to as late as the last record in the table.

RCP Read cam pointer

The RCP command will report the cam pointer and the CP variable can be used
by the user program.

RCTT Read number of cam tables

The RCTT command will report the number of cam tables and the CTT variable
can be used by the user program.
MC Enter Cam Mode

The MC command enters Cam Mode and must be issued before the G com-
mand.

Cam Example Program:

CTE(1) 'Erase all EE tables.
CTA(7,4000) 'Create a 7-point tbl. at each 4k enc. inc.
CTW(0) 'Add 1st point.
CTW(1000) 'Add 2nd pt. Go to point 1000 from start.
CTW(3000) 'Add 3rd pt. Go to point 3000 from start.
CTW(4000) 'Add 4th pt. Go to point 4000 from start.
CTW(1000) 'Add 5th pt. Go to point 1000 from start.
CTW(-2000) 'Add 6th pt. Go to point -2000 from start.
CTW(0) 'Add 7th point. Return to starting point.
 'Table has now been written to EE.
SRC(2) 'Use the virtual encoder.
MCE(0) 'Force linear interpolation.
MCW(1,0) 'Use table 1 from point 0.
MFMUL=1 'Simple 1:1 ratio from virtual encoder.
MFDIV=1 'Simple 1:1 ratio from virtual encoder.
MFA(0) MFD(0) 'Disable virtual encoder rampup/
 'rampdown sections.
MFSLEW(24000,1) 'Table is 6 segments * 4000 encoder
 'counts each.
 'Specify the second argument as a 1 to
 'force this number as the output total of
 'the virtual encoder into the cam.
MFSDC(-1,0) 'Disable virtual encoder profi le repeat.
MC 'Enter Cam Mode
G 'Begin move.
END

O(arg)=value Set move generator origin to value

The O()= command sets move generator origins based on the following argu-
ments:

85

Advanced Motion

0 Set the origin of the global move generator (sets value of PA)

1 Set the origin of move generator 1 (sets value of PC(1))

2 Set the origin of move generator 2 (sets value of PC(2))

OSH(arg)=value Shift move generator origin to value

The OSH()= command shifts the move generator origins based on the following
arguments:

0 Shift the origin of the global move generator (sets value of PA)

1 Shift the origin of move generator 1 (sets value of PC(1))

2 Shift the origin of move generator 2 (sets value of PC(2))

Multiple Trajectories

It is possible to create two trajectories that run concurrently. There are restric-
tions on which combinations of moves are possible. A combined move con-
sists of a selection from column 1 and a selection from column 2. Note that
Torque Mode cannot be combined with any other mode, selecting Torque Mode
replaces any other mode currently running.

Trajectory 1 - PC(1) Trajectory 2 - PC(2)
Position - MP(1)
Velocity - MV(1)

CANopen Interpolation
Follow - MFR(2)

Cam - MC(2)
Torque Mode overrides all other modes

MP(1) Position Mode
MV(1) Velocity Mode

RPC(1) Reports
Commanded Position

Trajectory Generator 1

Trajectory Generator 2

Input Sources
SRC(0) External Enc.
SRC(1) Internal Clock

PID

Trajectory
Summing

∑

 Motor
Shaft

MFR(2) Follow Mode
MC(2) CAM Mode

RPC(2) Reports
Commanded Positon

RPA Reports Motor Position

Dual
Trajectory
Generator

86

Advanced Motion

Commands that are selectable to act on only one of these options or both can
be provided with a parameter:

MP(exp) exp = 1 only
MV(exp) exp = 1 only
MFR(exp) exp = 2 only
MSR(exp) exp = 2 only
MC(exp) exp = 2 only

G(exp) exp = 1 or 2
X(exp) exp = 1 or 2
S(exp) exp = 1 or 2
TWAIT(exp) exp = 1 or 2
=PC(exp) exp = 1 or 2
RPC(exp) exp = 1 or 2
O(exp)= exp = 1 or 2
OSH(exp)= exp = 1 or 2
RMODE(exp) exp = 1 or 2

In the following program, the SmartMotor will move to its origin and then
instantly start gearing to an external encoder. It will then perform a relative
move on top of the gearing relationship, with the relative move governed by the
VT= and ADT= limits.

MP(1) 'Choose position mode from column 1
MFR(2) 'Choose follow mode from col. 2 at same time
PT=0 'This command only relevant to position move
VT=100000 'This command only relevant to position move
ADT=10 'This command only relevant to position move
MFMUL=1 'This command only relevant to follow mode
MFDIV=1 'This command only relevant to follow mode
G(1) 'Position move starts
TWAIT(1) 'Wait for position move only
G(2) 'Start Follow Mode
WAIT=1000 'Wait for one second
PRT=1000 'Prepare for a relative move on top of
 'the Follow Mode
G(1) 'Execute the relative position move
TWAIT(1) 'Wait for position move to fi nish
PT=0 'Command position 0 of the position mode’s
 'frame of reference
G(1)
S 'Stop all moves (follow and position.)
MP 'Position mode exclusively. Note there is no
 'parentheses to make only position mode
PT=0
G 'Motor returns to position 0 in terms of actual
 'position because this is only position mode

87

Advanced Motion

Reading Trajectory Information

=VT Read back what has been set as the velocity target.
=PT Read back what has been set as the position target.
=PRT Read back what has been set as the position relative target.
=AT Read back what has been set as the acceleration target.
=DT Read back what has been set as the deceleration target.
=PC Commanded position of the motor shaft as a result of motion
 trajec tory generation. This may include a sum of concurrent
 moves such as a follow mode move combined with a position
 move.
=PC(0) equivalent to a=PC
=PC(1) Reports the commanded position in trajectory generator 1’s
 frame of reference.
=PC(2) Reports the commanded position in trajectory generator 2’s
 frame of reference.
=VC Real-time commanded velocity from all trajectory generators.
=AC Real-time commanded acceleration from all trajectory genera
 tors (negative indicates deceleration.)

=VA Report the velocity of the motor shaft. The units are encoder
 counts per PID sample times 65,536. The factor of 65,536
 allows for finer resolution of slower speeds. Please note that
 this finer resolution information below 65,536 is calculated via
 a filter since the only direct measurement is whole units of
 encoder counts per sample.

VAC(exp) Controls the filter used to measure speed. Default value is
 65,000. Higher values provide a smoother filter, at the cost of
 a longer settling time. The maximum value is 65,535. A value
 of 0 turns off this filtering.

=PA Reads position of the motor shaft based on the encoder
 chosen by ENC1,ENC0 commands.
=CTR(0) Position of the internal encoder. Unaffected by ENC1,ENC0
 commands.
=CTR(1) Accumulated counts from the external encoder. Unaffected by
 ENC1, ENC0 commands.

Modulo Position
The actual position of the motor can be reported through a modulo count in
addition to the usual absolute count. This count allows for applications where
position is cyclical such as a rotary table.

PML=frm Set the modulo limit. The modulo counter will report between
0 and this value minus one. By default, this is 1,000. The mini-
mum value is 1,000. This command resets the modulo count to
0.

=PML Reads the modulo limit currently set.

88

Advanced Motion

PMT=frm Set a target for a position move in terms of a modulo posi
tion. The motor will take the shortest path to reach this value.
This means that the motor may move in either a clockwise or
counter-clockwise direction, depending on which one produces
the shortest motion in modulo terms.

=PMT Reads what was set for the modulo target.

=PMA Reads actual motor position in modulo count. This counter is
affected by the O= and OSH= commands.

ENC0 Uses internal encoder for commanded motion, actual position
 reporting, modulo position reporting.

ENC1 Uses external encoder for commanded motion, actual position
 reporting, modulo position reporting. Be sure that the correct
 encoder type is selected with the MF0 (for quadrature), or
 MS0 (step and direction) is chosen.

Postion Error Limits
EL=frm Set position error limit.
=EL Read back position error limit.
=EA Read position error(Commanded - Actual Positions).

DE/Dt Limits

=DEA Read back the actual rate of change of the PID position error.
This value is averaged over 4 consecutive PID cycles, and is in
units of position error per PID cycle *65,536.

DEL=frm Set position error rate limit. This is useful for detecting
obstructions to the motor’s path, and faulting the motor sooner
than position error limit alone would. This is in the same units
as the =DEA command.

=DEL Read back the error rate limit.

Velocity Limits
VL=frm Set the velocity fault limit in revolutions per minute. When
 the motor exceeds this speed (traveling clockwise or counter
 clockwise), then the motor will fault.
=VL Read back the current setting of the limit in revolutions per
 minute.

Hardware Limits
External stimulus to limit motion, causes a motion fault if exceeded.
EILP Enable positive limit switch on I/O port.
EILN Enable negative limit switch on I/O port.

89

Advanced Motion

Software Limits
As an alternative to hardware limits connected to the limit inputs of the
SmartMotor, software limits offer distinct advantages. Software limits are “vir-
tual” limit switches that can interrupt motion with a fault in the event the actual
position of the motor strays beyond the desired region of operation. The limit
fault is directionally sensitive, so it will cause a fault if motion is commanded
further in the direction of a limit once the limit has been past.

SLE Software Limits Enable
SLD Software Limits Disable

SLN=frm Sets left-negative limit.
SLP=frm Sets right-positive limit.
SLM(exp) Software limit mode. Determines if software limits result in a
 fault or not. 0 no fault, 1 causes fault when soft limit history
 asserted.

Fault Handling
FSA(exp1,exp2) Fault stop action.

 exp1: the type of fault to set a mode on:
 0 – All types of fault.
 1 – Hardware travel limits.
 2+ - Reserved.

 exp2: action to take
 0 - Default action (MTB)
 1 - Servo off
 2 - X command

90

91

The Quick Start section of this guide describes the minimum SMI functional-
ity necessary to talk to a SmartMotor as well as create, download and test
SmartMotor programs. SMI as a whole, however, has much greater capability.

SMI Projects
In applications with more than one
SmartMotor and possibly more than
one program or communications
port, it is helpful to organize all of the
elements as a Project, rather than
deal with individual files. Projects
can be created from the “File” menu.
When starting a new project, you
have the option of SMI2 exploring
the network of motors and setting up
the project automatically, or to do it manually by double clicking on the specific
communication ports or motors exhibited in the Information window.

Terminal Window
The Terminal window acts as a real time portal between you and the SmartMotor.
By typing commands in the Terminal window, you can set up and execute tra-
jectories, execute subroutines of downloaded programs and request data to be
reported back.

Specific communication
ports can be selected using
the tabs. If multiple
SmartMotors are on a
single communication port
are individually addressed,
commands can be routed
to any or all of them by
making the appropriate
selection from the pull-
down menu just below the

tabs. The SMI program will automatically send the appropriate codes to the
network to route the data to the intended motors. Commands can be entered in
the white text window or the blue screen. If data is flooding back from the motor,
then the white text window will be more convenient. PRINT commands contain-
ing data can be sprinkled in programs to send data to the Terminal window as
an aid in debugging. Data that has associated report commands like Position
that is retrieved using RPA command can be easily reported by simply putting
the report command in the program code. Be careful in tight loops because they
can bombard the Terminal window with too much data. If a program is sending
too much data to the Terminal window, try putting in a WAIT=50 command in the
program. The Terminal window has a scroll feature that allows the user to review
history.

SMI Advanced Functions

When working with
multiple motors,
programs or ports,
creating a Project
can be a great
way of organizing
and using all of
the individual
elements.

92

 Configuration Window
The Configuration window shows the cur-
rent configuration and allows access to spe-
cific ports and motors. Press “Find Motors”
to analyze your system, or right-click on an
available port and either “detect motors” or
“address motors” to find motors attached to
that port. Once that is accomplished you
can double-click on any port to get instant
access to its properties. You can also dou-
ble-click on any motor to immediately bring
up the “Motor View” tool for that motor. By
right-clicking the motor, you have immediate
and convenient access to its properties
along with various other tools.

The Configuration window is essential to
keeping multiple SmartMotor systems orga-
nized, especially in the context of develop-

ing multiple programs and debugging their operation.

Program Editor
SmartMotor programs are written in the SMI Program Editor before being
scanned for errors and downloaded to the motor. To get the Program Editor to
appear, simply go to the “File” menu and select “New” or simply press the
button on the toolbar. As you write your program, the editor will highlight com-
mands it recognizes in different colors.

It is generally good practice to indent program
loops by two spaces for readability. Comments are
made invisible to the syntax scanner by preceding
them with a single quotation mark.

Every program requires an END, even if the pro-
gram is designed to run indefinitely and the END is
never reached.

The first time you write a program, you must save
it before you can download it to the motor. Every
time a program is downloaded, it is automatically
saved to that file name. This point is important to
note as most Windows applications require an overt “save”. If you want to set
aside a certain revision of the program, it should be copied and renamed, or you
should simply save the continued work under a new name.

Once a program is complete, you can simply scan it for errors by pressing the
 button on the toolbar or scan and download it at one time by pressing the

button. If errors are found, the download will be aborted and the problems will
be identified in the Information window located at the bottom of the screen.

Programs are scanned using a language file which is related to different motor
firmware versions. If compile and download is selected, the language file will

SMI Advanced Functions

The Confi guration
window is essential
to keeping multiple
SmartMotor
systems organized.

93

SMI Advanced Functions

be chosen based on the version read from the motor. If “scan” is selected, the
default language file will be used. To change the default language file, select
“Compile” from the menu then Compiler default firmware version and then click
on the desired firmware version.

Information Window

The Information window shows program status. When a program is scanned
and errors are found, they are listed in the Information Window preceded by an.

By double-clicking on the error in the Information
window, the specific error will be located in the Pro-
gram Editor and underlined. In the example below,
the scanner does not recognize the command
TWAITS. The correct command is TWAIT.

You can correct the error and press the button
again. Once all errors are cleared, the program can
be downloaded to the SmartMotor.

Warnings may appear in the Information window to
alert you to potential problems, but warnings will not
prevent the program from being downloaded to the
SmartMotor. It is the programmer’s responsibility to

determine the importance of addressing the warnings.

 Serial Data Analyzer
The SMI Terminal window formats text and performs other housekeeping func-
tions that are invisible to the user. For an exact picture of what data is being
traded between the PC and the SmartMotor, press the button and the Serial
Data Analyzer window will appear.

The Serial Data Analyzer window can display serial data in a variety of formats
and can be a useful tool in debugging communications. For non-intrusive “sniff-
ing” of data, a special cable can be configured to connect the host receive pin

Program errors
can be located
instantly by
double-clicking
on the error listed
in the Information
window.

SMI can display
the precise data
being sent back
and forth between
the host and the
SmartMotor, in
multiple formats.

94

and ground the data channel to be monitored.

 Motor View
The SMI Motor View window enables the user to view multiple parameters
related to the motor, in real time. It is most conveniently accessible by double-
clicking the motor of interest in the Configuration window.

Press the “Poll” button
to initiate the real-time
scanning of motor
parameters.

A program can be
running in the motor
while the Motor View
window is polling as
long as the program
itself does not print
text to the serial chan-
nel being used for the
polling.

In addition to the stan-
dard items displayed,
there are two fields
that allow the user
to select from a list
of additional param-
eters to display. In the
example here, Voltage
and Current are polled. This information can be useful when setting up a system
for the first time, or debugging a system in the field. Temperature is also useful
to monitor in applications with demanding loads. All seven of the user-configu-
rable onboard I/O points are shown. Any onboard I/O that is configured as an
output can be toggled by clicking on the dot below the designating letter.

The SmartMotor has built-in provisions allowing them to be identified by the SMI
software. If a motor is identified, a picture of it will appear in the lower left corner
of the Motor View window. Tabs across the top offer a wealth of additional infor-
mation.

 Monitor Window
If you want maximum speed and you
are interested in only a small number
of very specific items, the SMI Moni-
tor window allows you to create your
own fully customized monitor. You can
find the Monitor window by going to
the “Tools” menu and selecting “Moni-
tor View”.

Motor View
provides a window
into the inner
workings of a
SmartMotor, in real-
time.

SMI Advanced Functions

95

Polling items can be added by pressing the button. The “Add New Monitor
Item” window will appear and offer special fields for every portion of the monitor-
ing function.

To monitor items that do not have explicit report commands, fully custom items
can be added by entering the specific commands appropriate to getting the data
reported, like making a variable equal to the parameter and then reporting the
variable, for example.

 Chart View
For graphical monitoring of data, go to the “Tools” Menu and select “Chart View”.
Like the Monitor View window, polling items for Chart View can be added by

pressing the button.

The Fields and Options are
identical to those from the
Monitor tool.

Adjustable upper and lower
limits for each polled param-
eter allow them to be scaled
to fit the space. The toolbar
across the top provides mul-
tiple additional functions that
are described by holding the
cursor over them (without
clicking).

Press the button to start the
charting action.

While Chart View does not
have an intrinsic printing func-
tion for a paper copy, Win-
dow’s standard “Print Screen”
key can capture the graph to
be pasted into any standard
paint package. Not only is
Chart View a very useful tool

to see the behavior of the different motion parameters, but its graphical data can
be a useful addition to written system reports.

 Macros
For the SMI user’s convenience, the programmer can associate a command or
series of commands with a Ctrl-# key. This is done by selecting “Macro..” from
the Tool Menu.

To add a Macro, start by pressing the “ADD” button in the Macro window.

Enter a name for the Macro, select a shortcutControl Key and provide a simple
description of the Macro. Then type the command or commands in the window
provided.

Sometimes,
the best way to
understand a data
trend is by seeing
it graphically.
The SMI Chart
View provides
graphical access
to any readable
SmartMotor
parameter.

SMI Advanced Functions

96

When this is com-
plete, press the
“OK” button. You
will again be pre-
sented with the
Macro window.
Click once on the
macro you have
written and press the “RUN” button in the Macro window to test it.

If you are happy with the
results, you can press the
“Close” button, whereas if
you want to edit the Macro,
press the “Properties” button
instead. With this utility you
can create multiple Macros
to make the development of
your products quicker and
easier.

 Tuner
Tuning a SmartMotor is far simpler than tuning traditional servos, but it can be
even easier using the SMI Tuner to see the actual results of different tuning

SMI Advanced Functions

97

parameters. For a detailed description on how to tune a SmartMotor, refer to the
section Tuning the PID Control.

To bring up the SMI Tuner, select “Tuner” from the SMI “Tools” menu.

The Tuner shows the step response of
the SmartMotor, graphically. The step
response is the SmartMotor’s actual
reaction to the request for a small
but instantaneous change in position.
Rotor inertia prevents the SmartMotor
from changing its position in zero time,
but how valiant the effort is shows a
lot about how well in-tune the motor is.

The Tuner will download a program
that utilizes variables a, b, p, t, w and
z. The program that was in the motor
before tuning and the user variables
will be restored after tuning. Before
running the Tuner, be sure the motor,
and what ever it is connected to, is free to move about 1000 encoder counts or
more, and that the device is able to safely withstand an abrupt jolt. If that is the
case, then press the “Run Tuning” button at the bottom of the Tuner window.
If the SmartMotor is connected, is on, and still, you should see something like
what is depicted to the right. The upper curve with the legend on the left is the
SmartMotor’s actual position over time. Notice that it overshot its target posi-
tion before settling in. Exercising the procedure outlined in the section on PID
Tuning will stiffen the motor up and create less overshoot. Bear in mind that in
a real-world application, there will be an acceleration profile, not a demand for
instantaneous displacement, so significant overshoot will not exist. Neverthe-
less, it is useful to look at the worst case scenario of a step response.

To try a different set of tuning param-
eters, select the “Tuning Values” tab
to the left of the graph area. You will
see a list of the tuning parameters
with two columns. The one on the
left lists what is currently in the
SmartMotor. The column to the
right provides an area to make
changes.

In this example, change KP to
3000 and KD to 10000, then click
the “Apply new values” button.
Now these new values are in the
SmartMotor and we can execute
the test of another step response by

pressing the “Run tuner” button at the bottom of the Tuning window. The motor
will jolt again and the results of the step response will overwrite the previous
graph. Normally, this process involves repeated trials, again, exercising the pro-
cedure outlined in the section on The PID Filter.

SMI Advanced Functions

98

Once you are happy with the results, the parameters that had the best results
can be added to the top of your program in the SmartMotor, or in applications
where there are no programs in the motors, sent by a host after each power-up.
Whether from a host or in a program, the tuning parameters would be set using
the tuning commands:

KP=3000

KI=30

KD=10000

KL=32767

F

 SMI Options
The SMI Terminal Software can be customized in general by way of the “Options”
choice in the “Tools” menu.

A key option to consider is the firmware version. Since different SmartMotor
firmware versions have subtle differences, the program scanner needs to know
which firmware is being utilized so it can know what are legal commands and
what are commands that are unsupported.

Other adjustable options deal more with the issue of preferences.

 SMI Help
The most complete and up-to-date information available for SMI functions is
available within the program’s extensive “Help” facility. The easiest way to get
instant access to help on any feature is by clicking on the button in the main
toolbar. After clicking on the button, click on the item you want to learn about
and information will be presented on that item.

SMI Advanced Functions

99

SMI Advanced Functions

 SMI Trace Functions

First, you must select a program that matches the one currently loaded in the
motor by double-clicking on it in the Editor window. This will cause the pro-
gram to be scanned in order to generate the addresses that will be used while
tracing.

The general procedure for tracing is as follows:

Select the desired Mode.

Double-click on desired line in the Editor window if needed.

Press the desired button in the Trace/Step box.

Remember the program must run before anything will happen.

The Status window shows the current state of the Trace program and Motor
Program. This becomes active after a command is executed on the “Trace”
tab and will remain active until the Motor View is closed.

100

Possible displays:

“Not Connected” – Not connected to motor

“Program running” or “Program Stopped” – If at a breakpoint or the
 program is stopped.

“Trace Active or Trace Inactive” – If there a trace currently in progress
or waiting to hit a breakpoint in progress. If a trace is active it must be
canceled before selecting a new Mode.

“At Break Point” – Program execution halted because of breakpoint or
a step has been completed.

Motor Program window: Shows the name of the program contained in the
motor.

Trace Program window: Shows the name of the program that was doubled-clicked.

“Clear Display” button: Clears the highlighted text in the editor window and
remove any information in the Trace List window.

Program frame:

“End Program:” Stops program execution by writing END comand

“Run from Beginning:” Issue RUN command.

“Run Continue”: Release firmware from current breakpoint. Only
avaiable when at a breakpoint.

Mode Frame:

Trace selections: For any trace information to be retrieved from the
motor the program must run. After a trace is completed or canceled it
will not affect the execution state of the program in the motor.

“Current:” Captures the first 20 points encountered.

“About,” “Before” and “After”: Requires the user to select a line from
the program in the Editor window by double-clicking on it. This will
load the command, address, and line fields with information. Verify the
information is correct. If running a trace with one of these modes, the
user can select the “Cancel Current Trace” button.

“About:” captures 9 points before and 10 points after desired line.

“Before:” captures 20 points before the desired line.

“After:” captures 20 points following the desired line.

“Continuous:” Polls the motor for the commands that are executing.
Because of bandwidth, every line executed by the prgram will not
show up in the trace view or highlighted in the program.

“Trace/Step” frame options for the trace selections.

SMI Advanced Functions

101

“Start Trace and Run from Beginning” button: Sets the trace informa-
tion in motor and issues a RUN command.

“Start Trace” button: Sets the trace information in the motor.

“Start Trace and Run from Current” button: Available when at a break
point. The trace information will be set in the motor and the program
will continue from the current break point.

“Cancel Trace” button: Available when a trace is active to cancel the
current trace.

Step:

Trace/Step frame options for the step selection:

“Step from Beginning” button: Sets a breakpoint in the motor and
issues a RUN command. The program will execute the first line of
code and stop.

“Step from Current” button: Sets a breakpoint in the motor. If the
program is running, the motor will stop at the next command. If the
program is at a breakpoint the motor will execute the next command
and stop.

BREAK at Command:

Requires the user to select a line in the program by double-clicking on
it in the Editor window. This will load the Command, Address, and
Line fields with information. Verify the information is correct.

“Trace/Step” frame options for the BREAK At Command selections

“Set Breakpoint and Run from Beginning” button: Sets the breakpoint
and runs the program from the beginning.

“Set Breakpoint” button: Sets a breakpoint in the motor.

“Set Breakpoint and Run from Current” button: If at a breakpoint this
sets the new breakpoint and runs the program from the current location.

“Remove Breakpoint” button: If a breakpoint was set and not reached
this button removes it.

SMI Advanced Functions

102

103

ASCII is an acronym for American Standard Code for Information Interchange.
It refers to the convention established to relate characters, symbols and func-
tions to binary data. If a SmartMotor is asked its position over the RS-232
link, and it is at position 1, it will not return a byte of value one, but instead will
return the ASCII code for 1 which is binary value 49. That is why it appears on
a Terminal window as the numeral 1.

The ASCII character set is as follows:

 Appendix A: The ASCII Character Set

0 NUL
1 SOH
2 STX
3 ETX
4 EOT
5 ENQ
6 ACK
7 BEL
8 BS
9 HT
10 LF
11 VT
12 FF
13 CR
14 SO
15 SI
16 DLE
17 DC1
18 DC2
19 DC3
20 DC4
21 NAK
22 SYN
23 ETB
24 CAN
25 EM
26 SUB
27 ESC
28 FC
29 GS
30 RS
31 US
32 SP
33 !
34 “

35 #
36 $
37 %
38 &
39 ‘
40 (
41)
42 *
43 +
44 ,
45 -
46 .
47 /
48 0
49 1
50 2
51 3
52 4
53 5
54 6
55 7
56 8
57 9
58 :
59 ;
60 <
61 =
62 >
63 ?
64 @
65 A
66 B
67 C
68 D
69 E

70 F
71 G
72 H
73 I
74 J
75 K
76 L
77 M
78 N
79 O
80 P
81 Q
82 R
83 S
84 T
85 U
86 V
87 W
88 X
89 Y
90 Z
91 [
92 \
93]
94 ^
95 _
96 ’
97 a
98 b
99 c
100 d
101 e
102 f
103 g
104 h

105 i
106 j
107 k
108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |
125 }
126 ~
127 Del

104

105

The SmartMotor language allows the programmer to access data on the binary
level. Understanding binary data is very easy and useful when programming
the SmartMotor or any electronic device. What follows is an explanation of how
binary data works.

All digital computer data is stored as binary information. A binary element is
one that has only two states, commonly described as “on” and “off” or “one”
and “zero.” A light switch is a binary element. It can either be “on” or “off.” A
computer’s memory is nothing but a vast array of binary switches called “bits.”

The power of a computer comes from the speed and sophistication with which it
manipulates these bits to accomplish higher tasks. The first step towards these
higher goals is to organize these bits in such a way that they can describe
things more complicated than “off” or “on.”

Different numbers of bits are used to make up different building blocks of data.
They are most commonly described as follows:

 Four bits = Nibble
 Eight bits = Byte
 Sixteen bits = Word
 Thirty two bits = Long

One bit has two possible states, on or off. Every time a bit is added, the pos-
sible number of states is doubled. Two bits have four possible states. They
are as follows:

 00 off-off
 01 off-on
 10 on-off
 11 on-on

A nibble has 16 possible states. A byte has 256, a word has 65536, and a long
has billions of possible combinations.

Because a byte of information has 256 possible states, it can reflect a number
from zero to 255. This is elegantly done by assigning each bit a value of twice
the one before it, starting with one. Each bit value becomes as follows:

 Bit Value
 0 1
 1 2
 2 4
 3 8
 4 16
 5 32
 6 64
 7 128

If all their values are added together the result is 255. By leaving particular
bits out, any sum between zero and 255 can be created. Look at the following
example bytes and their decimal values:

Appendix B: Binary Data

106

Appendix B: Binary Data

 Byte Value

 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 1 1
 0 0 0 0 0 0 1 0 2
 0 0 0 0 0 0 1 1 3
 0 0 0 1 0 0 0 0 16
 0 0 0 1 1 1 1 0 30
 0 0 1 1 1 1 0 0 60
 1 0 0 0 0 0 0 0 128
 1 0 0 1 1 1 0 1 157
 1 1 1 1 1 1 1 1 255

To make use of the limited memory available with micro controllers that can fit
into a SmartMotor, there are occasions where every bit is used. One example
is the Status Word 0. A single value can be uploaded from a SmartMotor and
have coded into it, in binary, eight, sixteen or thirty-two independent bits of infor-
mation. The following is the Status Word 0 and its 16 bits of coded information:

 Name Description Bit Value

 Drive ready 0 1
 Bo Motor OFF 1 2
 Bt Trajectory in progress 2 4
 Bus voltage fault 3 8
 Ba Over current 4 16
 Bh Excessive temperature fault 5 32
 Be Excessive position error fault 6 64
 Bv Velocity limit fault 7 128
 Real-time temperature limit 8 256
 Derivative of position error limit 9 512
 Hardware right (+) limit enabled 10 1024
 Hardware left (-) limit enabled 11 2048
 Br Historical right (+) limit fault 12 4096
 Bl Historical left (-) limit fault 13 8192
 Bp Real time right (+) limit 14 16384
 Bm Real time left (-) limit 15 32768

There are three useful mathematical operators that work on binary data, the
“&” (bit-wise and), the ”|” (bit-wise or) and the “!|” (bit-wise exclusive or). The
“&” compares the two operands (bytes, words or longs) and looks for what they
have in common. The resulting data has ones only where there were ones in
both operands. The “|” results in a one for each bit corresponding to a one
in either operand. The “!|” produces a one for each bit when the correspond-
ing bits in the two operands are different and a zero when they are the same.
These operations are illustrated in the following examples:

 A B A&B A|B A!|B
 0 0 0 0 0
 0 1 0 1 1
 1 0 0 1 1
 1 1 1 1 0

107

Appendix B: Binary Data

Knowing how the binary data works will enable shorter, and therefore faster,
code to be written. The following are two code examples that are written to
check if both limit inputs are high. One does this without taking advantage of
a binary operator while the second shows how using a binary operator makes
the code shorter, and therefore faster.

Example 1:

IF Bm 'Look for - limit high
 IF Bp 'Look for + limit high
 GOSUB100 'Execute subroutine
 ENDIF
ENDIF

Example 2:

IF (W(0)&49152)==49152 'Look at both limits, bits 14 & 15,
 'w/bit mask 49152 = 32768 + 16384
 GOSUB100 'Execute subroutine
ENDIF

Both examples will execute subroutine 100 if both limit inputs are high.
Example two uses less code than example one and will run faster as a part of
a larger program loop.

The next two examples show how the use of the “|” operator can improve pro-
gram size and execution speed:

Example 3:

IF IN(0) 'Look for input 0
 GOSUB200 'Execute subroutine
ENDIF
IF IN(1) 'look for input 1
 GOSUB200 'Execute subroutine
ENDIF

Example 4:

IF IN(W,0,3) 'Look at both inputs 0 and 1
 GOSUB200 'Execute subroutine
ENDIF

Both examples 3 and 4 accomplish the same task with different levels of effi-
ciency.

108

109

Legend
When a description of a command states that the command is assigned a
value, this means that the command like VA would typically be used like this:

VA=2*a

When a description states that it ‘reports’ a value, then that command typically
stands alone on a line, and prints results to the active serial interface:

RVA

When a description of a command states that a command ‘Sets’ a value, then
that command typically is on the right-hand side of an equals:

b=ADT

Command descriptions below that do not specify one of these conditions are
simply commands that complete an action and stand alone on a line.

Command List:
a...z Get user variable

a=...z= Set user variable

aa...zz Get user variable

aa=...zz= Set user variable

aaa...zzz Get user variable

aaa=...zzz= Set user variable

ab[index] Get array variable 8 bit

ab[index]=... Set array variable 8 bit

af[index] Get float variable

af[index]=... Set float variable

al[index] Get array variable 32 bit

al[index]=... Set array variable 32 bit

aw[index] Get array variable 16 bit

aw[index]=... Set array variable 16 bit

Ai(0) Arm index rising edge of internal encoder

Ai(1) Arm index rising edge of external encoder

Aij(0) Arm index rising edge then falling edge internal
encoder

Aij(1) Arm index rising edge then falling edge external
encoder

Appendix C: Commands

110

Aj(0) Arm index falling edge of internal encoder

Aj(1) Arm index falling edge of external encoder

Aji(0) Arm index falling edge then rising edge internal
encoder

Aji(1) Arm index falling edge then rising edge external
encoder

ABS(...) Get integer absolute value

AC Get commanded acceleration

ACOS(...) Get arc-cosine in degrees

ADDR Get motor’s serial address

ADDR=... Set serial address

ADT=... Set acceleration and deceleration

ADTS=... Set accel. and decel. for synchronized motion

AMPS Get assigned max. drive PWM limit

AMPS=... Set PWM drive signal limit

ASIN(...) Get arc-sine in degrees

AT Get target acceleration

AT=... Set acceleration

ATS=... Set acceleration for synchronized motion

ATAN() Get arc-tangent in degrees

ATOF() Get ASCII to float conversion

B() Get status bit

Ba Get over current Status Bit

BAUD(0) Get baud rate of channel 0.

BAUD(1) Get baud rate of channel 1.

BAUD# Set baud rate of channel 0.

BAUD(0)=... Set baud rate of channel 0.

BAUD(1)=... Set baud rate of channel 1.

Be Get excessive position error Status Bit

Bh Get excessive temperature Status Bit

Bi(0) Get index captured Status Bit (rising, internal
encoder)

Bi(1) Get index captured Status Bit (rising, external
encoder)

Bj(0) Get index captured Status Bit (falling, internal
encoder)

Appendix C: Commands

111

Appendix C: Commands

Bj(1) Get index captured Status Bit (falling, external
encoder)

Bk Get EEPROM data integrity Status Bit

Bl Get historical hardware left/negative limit Status
Bit

Bls Get historical software left/negative limit Status
Bit

Bm Get left/negative hardware limit Status Bit

Bms Get left/negative software limit Status Bit

Bo Get motor off Status Bit

Bp Get right/positive hardware limit Status Bit

Bps Get right/positive software limit Status Bit

Br Get historical right/positive hardware limit Status
Bit

Brs Get historical right/positive software limit Status
Bit

Bs Get syntax error Status Bit

Bt Get trajectory in progress Status Bit

Bv Get velocity error fault

Bw Get encoder wrap around Status Bit

Bx(0) Get real time internal index input Status Bit

Bx(1) Get real time external index input Status Bit

BREAK Program execution flow control.

BRKENG Brake engage

BRKRLS Brake release

BRKSRV Brake without servo

BRKTRJ Brake without trajectory

C# Program subroutine label

CADDR Get CAN address

CADDR=... Set CAN address

CAN Get CAN error

CANCTL(...) Control network features

CASE # Program flow instruction

CBAUD Get CAN baudrate

CBAUD=... Set CAN baudrate

CCHN() Close a serial channel

112

CHN(0) Get RS-232 communications error flags

CHN(1) Get RS-485 communications error flags

CLK Get 1 millisecond clock variable

CLK=... Set 1 millisecond clock

COS(...) Get cosign of an angle in degrees

CP Get cam pointer

CTA(...) Add cam table

CTE(...) Erase cam table(s)

CTR(0) Get primary encoder/step and direction counter

CTR(1) Get second encoder/step and direction counter

CTT Get number of cam tables in EE

CTW() Write cam table point

DEA Get de/dt actual

DEFAULT Switch-case structure element

DEL Get the setting for de/dt fault limit

DEL=... Set the de/dt fault limit

DFS(...) Get af[] variable in its raw 32-bit IEEE format.

DITR(...) Disable 1 or more individual interrupts

DT Get deceleration setting

DT=... Set deceleration

DTS=... Set deceleration for synchronized motion

EA Get actual position error

ECHO Echo input data back out main channel

ECHO_OFF Stop echo main channel

ECHO1 Echo input data back out second channel

ECHO_OFF1 Stop echo second channel

EIGN(...) Set one or more I/O pins to input

EILN Activate negative hardware limit switch

EILP Activate positive hardware limit switch

EIRE Configure index capture pin to capture external
encoder

EIRI Configure index capture pin to capture internal
encoder

EISM(6) Confgure pin 6 to call G command

EITR(...) Enable one or more interrupts

Appendix C: Commands

113

EL Get position error fault limit

EL=... Set position error fault limit

ELSE If structure element

ELSEIF Else structure element

ENC0 Select internal encoder for servo

ENC1 Select external encoder for servo

END End program

ENDIF End if statement

ENDS End switch structure

EOBK(...) Send brake signal to I/O output

EPTR Get data EEPROM pointer

EPTR=... Set data EEPROM pointer

ERRC Get most recent command error code

ERRW Get communication channel of most recent
command error

F Activate buffered PID settings

FABS(...) Get floating-point absolute error

FSA(...) Configure action upon fault

FSQRT(...) Get floating point square root

FW Get firmware version as 32-bit field

G Start motion (GO)

G(...) Start motion (GO) specific trajectory

GS Start motion (GO) for synchronized move

GETCHR Get character from main comm channel

GETCHR1 Get character from second comm channel

GOSUB(...) Call a subroutine by literal number, or variable

GOSUB# Call a subroutine

GOTO(...) Goto a program label by literal number, or vari-
able

GOTO# Goto a program label

HEX(...) Get a hex string into a variable

I(0) (capital i) Get hardware index position variable (rising
edge, internal encoder)

I(1) (capital i) Get hardware index position variable (rising
edge, external encoder)

IF ... Conditional test

Appendix C: Commands

114

IN(...) Get I/O input

INA(...) Get analog input

ITR(...) Configure user interrupt

ITRD Global disable of user interrupts

ITRE Global enable of user interrupts

J(0) Get hardware index position variable (falling
edge, internal encoder)

J(1) Get hardware index position variable (falling
edge, external encoder)

KA Get the buffered PID setting for KA (acceleration
feed-forward)

KA=... Set the buffered PID setting for KA (acceleration
feed-forward)

KC Get the setting for KC

KC=... Set KC

KCS Get the setting for KCS

KCS=... Set KCS

KD Get the buffered PID setting for KD (Derivative
term)

KD=... Set the buffered PID setting for KD (Derivative
term)

KG Get the buffered PID setting for KG (gravity
term)

KG=... Set the buffered PID setting for KG (gravity
term)

KI Get the buffered PID setting for KI (integral
term)

KI= Set the buffered PID setting for KI (integral term)

KL Get the buffered PID setting for KL (integral limit
term)

KL=... Set the buffered PID setting for KL (integral limit
term)

KP Get the buffered PID setting for KP (proportional
term)

KP= Set the buffered PID setting for KP (proportional
term)

KS Get the buffered PID setting for KS (derivative
filter control)

KS=... Set the buffered PID setting for KS (derivative
filter control)

Appendix C: Commands

115

KV Get the buffered PID setting for KV (velocity
feed-forward)

KV=... Set the buffered PID setting for KV (velocity
feed-forward)

LEN Main communications channel buffer fill level,
data mode

LEN1 Second communications channel buffer fill level,
data mode

LFS(...) Get float value from 32-bit IEEE format

LOAD Initiate program download to motor

LOCKP Prevent program upload until new program is
loaded

LOOP While structure element

MC Enable Cam Mode

MC(...) Enable Cam Mode, additional trajectory

MCE(...) Cam spline enable

MCW(...) Cam starting point

MDB TOB commutation enable

MDC Sine current commutation mode

MDE Trapezoidal encoder commutation mode

MDS Sine voltage commutation mode

MDT Trapezoidal hall commutation mode

MF0 Set CTR(1) to 0, and choose quadrature mode
on external encoder

MFA(...) Follow Mode Ascend ramp

MFD(...) Follow Mode Decend ramp

MFDIV Get Follow Mode divisor setting

MFDIV=... Set Follow Mode divisor

MFMUL Get Follow Mode multiplier setting

MFMUL=... Set Follow Mode divisor

MFR Choose Follow Mode with quadrature

MFR(...) Choose Follow Mode with quadrature, additional
trajectory

MFSDC(...) Follow Mode stall-dwell-continue

MFSLEW(...) Follow Mode Slew

MINV(...) Invert commutation

MODE Get Operating Mode

Appendix C: Commands

116

MODE(...) Get Operating Mode, specific trajectory

MP Enable Position Mode

MP(...) Enable Position Mode, additional trajectory

MS0 Set CTR(1) to 0, and choose step/direction
mode on external encoder

MSR Choose Follow Mode with step/direction

MSR(...) Choose Follow Mode with step/direction, addi-
tional trajectory

MT Enable Torque Mode

MTB Mode Torque Brake

MV Enable Velocity Mode

MV(...) Enable Velocity Mode, additional trajectory

O=... Set Origin

O(...)=... Set specific trajectory Origin

OC(...) Get output condition (24 volt IO)

OCHN(...) Open communications channel

OF(...) Get output faults (24 volt IO)

OFF Stop servoing the motor

OR(...) Set 1 or more outputs to low

OS(...) Set 1 or more outputs to high

OSH=... Shift Origin

OSH(...)=... Shift specific Origin

OUT(...)=... Set 1 or more outputs to a specific state

PA Get actual motor position

PAUSE Pause program execution

PC Get commanded motor position

PC(...) Get commanded motor pos., specific trajectory

PI Get the mathematical value pi

PID1 16,000 Hz PID rate

PID2 8,000 Hz PID rate (default)

PID4 4,000 Hz PID rate

PID8 2,000 Hz PID rate

PMA Get actual position modulo

PML Get position modulo limit setting

PML=... Set position modulo limit

Appendix C: Commands

117

PMT Get position modulo target (position move)

PMT=... Set position modulo target (position move)

PRA Get actual position relative to move start

PRC Get commanded position relative to move start

PRINT(...) Print data to main communications channel

PRINT1(...) Print data to second communications channel

PRT Get position relative target setting

PRT=... Set position relative target

PRTS(...) Set position target synchronized relative

PRTSS(...) Set supplemental position target synchronized
relative

PT Get position target setting

PT=... Set position target

PTS=(...) Set position target synchronized absolute

PTSS=(...) Set supplemental position target synchronized
absolute

PTSD Get synchronized move linear distance

PTST Get synchronized move linear time

Ra...Rz Report variables

Raa...Rzz Report variables

Raaa...Rzzz Report variables

Rab[index] Report byte array variables (8-bit)

Raf[index] Report float array variables

Ral[index] Report long array variables (32-bit)

Raw[index] Report word array variables (16-bit)

RABS(...) Report integer absolute value

RAC Report commanded acceleration

RACOS(...) Report arc-cosine in degrees

RADDR Report motor’s serial address

RAMPS Report assigned max. drive PWM limit

RANDOM Get the next value from random generator e.g.
a=RANDOM

RANDOM=... Set the random generator seed

RASIN(...) Report arc-sine in degrees

RAT Report target acceleration

RATAN(...) Report arc-tangent in degrees

Appendix C: Commands

118

RATOF(...) Report ASCII to float conversion

RB(...) Report Status Bit

RBa Report over current Status Bit

RBAUD(0) Report baud rate of channel 0.

RBAUD(1) Report baud rate of channel 1.

RBe Report excessive position error Status Bit

RBh Report excessive temperature Status Bit

RBi(0) Report index captured Status Bit (rising, internal
encoder)

RBi(1) Report index captured Status Bit (rising, external
encoder)

RBj(0) Report index captured Status Bit (falling, internal
encoder)

RBj(1) Report index captured Status Bit (falling, exter-
nal encoder)

RBk Report EEPROM data integrity Status Bit

RBl Report historical hardware left/negative limit
Status Bit

RBls Report historical software left/negative limit
Status Bit

RBm Report left/negative hardware limit Status Bit

RBms Report left/negative software limit Status Bit

RBo Report motor off Status Bit

RBp Report right/positive hardware limit Status Bit

RBps Report right/positive software limit Status Bit

RBr Report historical right/positive hardware limit
Status Bit

RBrs Report historical right/positive software limit
Status Bit

RBs Report syntax error Status Bit

RBt Report trajectory in progress Status Bit

RBv Report velocity error fault

RBw Report encoder wrap around Status Bit

RBx(...) Report real time index input Status Bit

RCADDR Report CAN address

RCAN Report CAN error

RCBAUD Report CAN baudrate

Appendix C: Commands

119

RCHN(0) Report RS-232 communications error flags

RCHN(1) Report RS-485 communications error flags

RCKS Report program checksum

RCLK Report 1 millisecond clock variable

RCOS(...) Report cosine of an angle in degrees

RCP Report cam pointer

RCTR(0) Report primary encoder/step and direction coun-
ter

RCTR(1) Report second encoder/step and direction coun-
ter

RCTT Report number of cam tables in EE

RDEA Report DE/Dt actual

RDEL Report the setting for DE/Dt fault limit

RDFS Report af[] variable in its raw 32-bit IEEE format.

RDT Report deceleration setting

REA Report actual position error

REL Report position error fault limit

REPTR Report data EEPROM pointer

RERRC Report most recent command error code

RERRW Report communication channel of most recent
command error

RES Get encoder resolution. e.g. a=RES

RESUME Continue program execution after a pause

RETURN Return from subroutine

RETURNI Return from interrupt routine

RFABS(...) Report floating-point absolute error

RFSQRT(...) Report floating point square root

RFW Report firmware version as 32-bit field

RGETCHR Report character from main communication
channel

RGETCHR1 Report character from second communication
channel

RHEX(...) Report a hex string into a variable

RI(0) Report hardware index position variable (rising
edge, internal encoder)

RI(1) Report hardware index position variable (rising
edge, external encoder)

Appendix C: Commands

120

RIN(...) Report I/O input

RINA(...) Report analog input

RJ(0) Report hardware index position variable (falling
edge, internal encoder)

RJ(1) Report hardware index position variable (falling
edge, external encoder)

RKA Report the buffered PID setting for KA (accelera-
tion feed-forward)

RKC Report the setting for KC

RKCS Report the setting for KCS

RKD Report the buffered PID setting for KD (deriva-
tive term)

RKG Report the buffered PID setting for KG (gravity
term)

RKI Report the buffered PID setting for KI (integral
term)

RKL Report the buffered PID setting for KL (integral
limit term)

RKP Report the buffered PID setting for KP (propor-
tional term)

RKS Report the buffered PID setting for KS (deriva-
tive filter control)

RKV Report the buffered PID setting for KV (velocity
feed-forward)

RLEN Main com channel buffer fill level, data mode

RLEN1 Second com channel buffer fill level, data mode

RLFS(...) Report float value from 32-bit IEEE format

RMFDIV Report Follow Mode divisor setting

RMFMUL Report Follow Mode multiplier setting

RMODE Report Operating Mode

RMODE(...) Report Operating Mode, specific trajectory

ROC(...) Report output condition (24 volt IO)

ROF(...) Report output faults (24 volt IO)

RPA Report actual motor position

RPC Report commanded motor position

RPC(...) Report commanded motor position, specific tra-
jectory

RPI Report the mathematical value pi

Appendix C: Commands

121

Appendix C: Commands

RPMA Report actual position modulo

RPML Report position modulo limit setting

RPMT Report position modulo target (position move)

RPRA Report actual position relative to move start

RPRC Report commanded position relative to move
start

RPRT Report position relative target setting

RPT Report position target setting

RPTSD Report synchronized move linear distance

RPTST Report synchronized move time (ms)

RRANDOM Report the next value from random generator

RRES Report encoder resolution.

RSAMP Report sample rate (Hz)

RSIN(...) Report sine of angle in degrees

RSLM Report soft limit mode

RSLN Report soft limit left/negative setting

RSLP Report soft limit right/positive setting

RSP Report sample rate and firmware string

RSP1 Report firmware compile date

RSP2 Report bootloader revision

RSQRT(...) Report integer square root

RT Report current requested torque

RTAN(...) Report tangent of angle in degrees

RTEMP Report temperature in degrees

RTH Report temperature limit setting

RTHD Report current limit timer setting

RTMR(...) Report user timer

RTRQ Report torque real-time

RTS Report torque slope setting

RUIA Report current

RUJA Report voltage

RUN Execute stored program

RUN? End if the RUN command has not been issued
since power up

RVA Report actual velocity (filtered)

122

RVC Report commanded velocity

RVL Report velocity limit setting

RVT Report target velocity

RW(...) Report a specific status word

S Stop move in progress abruptly

S(...) Stop move in progress abruptly, specific trajec-
tory

SADDR# Set motor to new address

SAMP Get sample rate (Hz)

SILENT Suppress PRINT messages main channel

SILENT1 Suppress PRINT messages second channel

SIN(...) Get sine of angle in degrees

SLD Disable software limits

SLE Enable software limits

SLEEP Initiate Sleep Mode main channel

SLEEP1 Initiate Sleep Mode second channel

SLM Get Soft Limit Mode. e.g. a=SLM

SLM(...) Set Soft Limit Mode

SLN Get left/negative software limit

SLN=... Set left/negative software limit

SLP Get right/positive software limit

SLP=... Set right/positive software limit

SQRT(...) Get integer square root

SRC(...) Set follow and/or cam encoder source

STACK Reset nesting stack tracking

STDOUT=... Set where report commands are printed to

SWITCH ... Program execution control

T Get the target toque setting

T= Set target torque

TALK Enable PRINT messages on main channel

TALK1 Enable PRINT messages on main channel

TAN(...) Get tangent of an angle in degrees

TEMP Get temperature

TH Get temperature limit setting

TH=... Set temperature limit

Appendix C: Commands

123

THD Get current limit timer setting

THD=... Sets current limit timer delay

TMR(...) Get a specific user timer value. e.g. a=TMR(0)

TMR(...) (as cmd) Set a user timer. e.g. TMR(0,1000)

TRQ Get torque real-time

TS Get torque slope setting

TS=... Set torque slope

TSWAIT Pause program during a synchronized move

TWAIT Pause program during a move

TWAIT(...) Pause pgm. during a move, specific trajectory

UIA Get motor current

UJA Get bus voltage

UO(...)=... Set one or more user Status Bits to specific values

UP Upload user EEPROM program contents

UPLOAD Upload user EEPROM readable program

UR(...) Set one or more user status bits to a 0.

US(...) Set one or more user status bits to a 1.

VA Get actual velocity (filtered)

VAC(...) Set velocity filter

VC Get commanded velocity

VL Get velocity limit setting

VL=... Set velocity limit

VLD(...) Sequentially load variables from data EEPROM

VST(...) Sequentially store variables to data EEPROM

VT Get velocity target setting

VT=... Set velocity target

VTS=... Set position target for synchronized motion

W(...) Report a specific status word

WAIT=... Suspends program for number of milliseconds

WAKE Terminate Sleep Mode main channel

WAKE1 Terminate Sleep Mode second channel

WHILE... Conditional program flow command

X Slow motor motion to stop

X(...) Slow motor motion to stop, specific trajectory

Z Total system reset

Appendix C: Commands

124

Z(...) Reset a particular Status Bit

Za Reset current limit violation latch bit

Ze Reset position error fault

Zh Reset temperature fault

Zl Reset historical left/neg. hardware limit latch bit

Zls Reset historical left/neg. software limit latch bit

Zr Reset historical right/pos. hardware limit latch bit

Zrs Reset historical right/pos. software limit latch bit

Zs Reset syntax error bit

ZS Reset system latches to power-up state

Zv Reset velocity error fault

Zw Reset encoder wrap around event latch bit

Appendix C: Commands

125

Long (32-bit signed) Word (16-bit signed) Bytes (8-bit signed)

al[n] where n is: aw[n] where n is: ab[n] where n is:
 LSb MSb LSb middle bytes MSb

0 0 1 0 1 2 3
1 2 3 4 5 6 7
2 4 5 8 9 10 11
3 6 7 12 13 14 15
4 8 9 16 17 18 19
5 10 11 20 21 22 23
6 12 13 24 25 26 27
7 14 15 28 29 30 31
8 16 17 32 33 34 35
9 18 19 36 37 38 39

10 20 21 40 41 42 43
11 22 23 44 45 46 47
12 24 25 48 49 50 51
13 26 27 52 53 54 55
14 28 29 56 57 58 59
15 30 31 60 61 62 63
16 32 33 64 65 66 67
17 34 35 68 69 70 71
18 36 37 72 73 74 75
19 38 39 76 77 78 79
20 40 41 80 81 82 83
21 42 43 84 85 86 87
22 44 45 88 89 90 91
23 46 47 92 93 94 95
24 48 49 96 97 98 99
25 50 51 100 101 102 103
26 52 53 104 105 106 107
27 54 55 108 109 110 111
28 56 57 112 113 114 115
29 58 59 116 117 118 119
30 60 61 120 121 122 123
31 62 63 124 125 126 127
32 64 65 128 129 130 131
33 66 67 132 133 134 135
34 68 69 136 137 138 139
35 70 71 140 141 142 143
36 72 73 144 145 146 147
37 74 75 148 149 150 151
38 76 77 152 153 154 155
39 78 79 156 157 158 159
40 80 81 160 161 162 163
41 82 83 164 165 166 167
42 84 85 168 169 170 171
43 86 87 172 173 174 175
44 88 89 176 177 178 179
45 90 91 180 181 182 183
46 92 93 184 185 186 187
47 94 95 188 189 190 191
48 96 97 192 193 194 195
49 98 99 196 197 198 199
50 100 101 200 201 202 203

Overlapping is “little-endian” for byte and word order

Overlapping
Memory: aw[0]
is the least
signifi cant word
of al[0], likewise
ab[0] is the least
signifi cant byte of
aw[0] and al[0].

Appendix D: Data Variables Memory Map

Integer Array Memory:

126

Appendix D: Data Variables Memory Map

Integer Variable Memory Non-Overlapping:

Name Quantity Type
a-z 26 32 bit signed

aa-zz 26 32 bit signed
aaa-zzz 26 32 bit signed

78 total letter variables

Float Variable Memory:

Name Quantity Type
af[0]-af[7] 8 64 bit IEEE-754

8 total floating-point

127

 Moving Back and Forth
This is a simple program, used to set tuning parameters and create an infinite
loop that causes the motor to move back and forth. Make note of the TWAIT
commands used to pause program execution during the moves.

EIGN(W,0) 'Disable hardware limits
ZS 'Clear faults
ADT=100 'Set maximum acceleration
VT=1000000 'Set maximum velocity
MP 'Set Position Mode
C10 'Place a label
 PT=100000 'Set position
 G 'Start motion
 TWAIT 'Wait for move to complete
 PT=0 'Set position
 G 'Start motion
 TWAIT 'Wait for move to complete
GOTO(10) 'Loop back to label 10
END 'Obligatory END (never reached)

 Moving Back and Forth with Watch
The following example is identical to the previous, except that instead of paus-
ing program execution during the move with the TWAIT, a subroutine is used
to monitor for excessive load during the moves. This is an important distinction
insofar as most SmartMotor programs should have the ability to react to events
during motion.

EIGN(W,0) 'Disable hardware limits
ZS 'Clear faults
ADT=100 'Set maximum acceleration
VT=100000 'Set maximum velocity
MP 'Set Position Mode
C1 'Place a label
 PT=100000 'Set position
 G 'Start motion
 GOSUB(10) 'Call wait subroutine
 PT=0 'Set position
 G 'Start motion
 GOSUB(10) 'Call wait subroutine
GOTO(1) 'Loop back to label 10
END 'Obligatory END (never reached)
' ****Subroutine
C10
 WHILE Bt 'Loop while trajectory in progress
 IF ABS(EA)>100 'Test for excessive load
 PRINT(“Excessive Load”,#13) 'Print warning
 ENDIF 'End test
 LOOP 'Loop back to While during motion
RETURN 'Loop back to label 10

Appendix E: Example Programs

Double space
indentation
within conditional
statements or
loops make
programs
signifi cantly more
readable.

128

 Homing Against a Hard Stop
Because the SmartMotor has the capability of lowering its own power level and
reading its position error, it can be programmed to gently feel for the end of
travel as a means to develop a consistent home position subsequent to each
power-up. The following program lowers the current limit, moves against a
limit, looks for resistance, declares and moves to a home just 100 counts inside
the hard limit. Machine reliability is heavily rooted in the process of eliminating
potential sources of failure, and eliminating a home switch and its associated
cable does well to leverage SmartMotor benefits toward increasing machine
reliability.

MDS 'Using Sine Mode commutation
KP=3200 'Increase stiffness from default
KD=10200 'Increase damping from default
F 'Activate new tuning parameters
AMPS=100 'Lower current limit to 10%
VT=-10000 'Set maximum velocity
ADT=100 'Set maximum acceleration
MV 'Set Velocity Mode
G 'Start motion
WHILE EA>-100 'Loop while position error is small
LOOP 'Loop back to WHILE
O=-100 'While pressed, declare home offset
S 'Abruptly stop trajectory
MP 'Switch to Position Mode
VT=20000 'Set higher maximum velocity
PT=0 'Set target position to be home
G 'Start motion
TWAIT 'Wait for motion to complete
AMPS=1000 'Restore current limit to maximum
END 'End Program

 Homing to the Index
Each SmartMotor has an encoder with an index marker at one angle. This
marker can be useful in establishing repeatable startup positions. The following
example moves in the negative direction until the index marker is seen. It then
decelerates to a stop and reverses until it aligns with the index marker.

EIGN(W,0)
O=0
ADT=100 'Set maximum acceleration
VT=10000 'Set maximum velocity
MP 'Set to Mode Position
PRT=20 'Move off in case on index
G 'Start motion
TWAIT 'Wait for motion to complete
i=I(0) 'Clear index fl ag by read
Ai(0) 'Arm the index register
PRT=-4000 'Set 1 rev, specifi c to motor
G 'Start motion

Appendix E: Example Programs

SmartMotors
present a unique
opportunity to
eliminate the failure
mode of a faulty
home switch or
cable.

129

WHILE Bi(0)==0 'Wait for index fl ag to be true
LOOP 'Loop back to Wait
X 'Decelerate to stop
TWAIT 'Wait for motion to complete
PT=I(0) 'Set target position for Index
G 'Start motion
TWAIT 'Wait for motion to complete
O=0 'Declare current position home
END 'End program

Analog Velocity
This example causes the SmartMotor's velocity to track an analog input. Analog
signals drift and dither, so a dead-band feature has been added to maintain a
stable velocity when the operator is not changing the signal. There is also a
wait feature to slow the speed of the loop.

EIGN(W,0) 'Disable hardware limits
KP=3020 'Increase stiffness from default
KD=10010 'Increase damping from default
F 'Activate new tuning parameters
ADT=100 'Set maximum acceleration
MV 'Set to Mode Velocity
d=10 'Analog dead band, 5000 = full scale
o=2500 'Offset to allow negative swings
m=40 'Multiplier for speed
w=10 'Time delay between reads
b=0 'Seed b
C10 'Label to create infi nite loop
a=INA(V1,3)-o 'Take analog 5Volt FS reading
x=a-b 'Set x to determine change in input
IF x>d 'Check if change beyond deadband
 VT=b*m 'Multiplier for appropriate speed
 G 'Initiate new velocity
ELSEIF x<-d 'Check if change beyond deadband
 VT=b*m 'Multiplier for appropriate speed
 G 'Initiate new velocity
ENDIF 'End If statement
b=a 'Update b for prevention of hunting
WAIT=w 'Pause before next read
GOTO10 'Loop back to label
END 'Obligatory END (never reached)

 Long Term Variable Storage
Each SmartMotor is equipped with a kind of solid-state disk drive called
EEPROM reserved just for long term data storage and retrieval. Data stored
in the EEPROM will remain even after power cycling, just like the SmartMo-
tor's program itself. EEPROM has limitations however. It cannot be written to
more than about one million times without being damaged. That may seem like
a lot, but if a write command (VST) is used in a fast loop, this number can be
exceeded in a short time. It is the responsibility of the programmer to see that
the memory limitations are considered. The following example is a subroutine

Appendix E: Example Programs

130

to be called whenever there is a limit contact. It presumes that the memory
locations were first seeded with zero.

C10 'Subroutine label
 EPTR=100 'Set EEPROM pointer in memory
 VLD (aa,2) 'Load 2 long variables from EEPROM
 IF Br 'If right limit, then...
 aa=aa+1 'Increment variable aa
 Zr 'Reset right limit state fl ag
 ENDIF
 IF Bl 'If left limit, then...
 bb=bb+1 'Increment variable bb
 Zl 'Reset left limit state fl ag
 ENDIF
 EPTR=100 'Reset EEPROM pointer in memory
 VST(aa,2) 'Store variables aa and bb
RETURN 'Return to subroutine call

 Look for Errors and Print Them
This code example looks at different error status bits and prints appropriate
error information to the RS-232 channel.

C10 'Subroutine label
 IF Be 'Check for position error
 PRINT(“Position Error”, #13)
 ENDIF
 IF Bh 'Check for over temp error
 PRINT(“Over Temp Error”,#13)
 ENDIF
 IF Ba 'Check for over current error
 PRINT(“Over Current Error”,#13)
 ENDIF
RETURN 'Return to subroutine call

 Changing Speed upon Digital Input
SmartMotors have digital I/O that can be used for many purposes. In this exam-
ple, a position move is started and the speed is increased by 50% if input A goes
low.

EIGN(W,0) 'Disable hardware limit IO
KD=10010 'Changing KD term in tuning
F 'Accept new KD
O=0 'Reset origin
ADT=100 'Set maximum acceleration ‘ATTENTION
VT=10000 'Set maximum velocity ‘ATTENTION
PT=40000 'Set fi nal position
MP 'Set Position Mode
G 'Start motion
WHILE Bt 'Loop while motion continues
IF IN(0)==0 'If input is low

Appendix E: Example Programs

This example is
a subroutine. It
would be called
with the command
GOSUB10.

This example is
a subroutine. It
would be called
with the command
GOSUB10.

131

 IF VT==10000 'Check VT so change happens once
 VT=12000 'Set new velocity ‘ATTENTION
 G 'Initiate new velocity
 ENDIF
ENDIF
LOOP 'Loop back to WHILE
END

 Pulse Output Upon a Given Position
It is often necessary to fire an output upon a certain position. There
are many ways to do this with a SmartMotor. This example sets I/O B as an
output while first making sure it comes up 1 by presetting the output value, then
watches the encoder position until it exceeds 20000.

EIGN(W,0) 'Disable limits
ZS
ITR(0,4,0,0,1) 'ITR(int#,sw,bit,state,lbl)
ITRE
EITR(0)
OUT(1)=1 'Set I(0)/O B to output, high
ADT=100 'Set maximum acceleration
VT=100000 'Set maximum velocity
MP 'Set Position Mode
'****Main Program Body
WHILE 1>0
 O=0 'Reset origin for move
 PT=40000 'Set fi nal position
 G 'Start motion
 WHILE PA<20000 'Loop while motion continues
 LOOP 'Wait for desired position to pass
 OUT(1)=0 'Set output lo
 TMR(0,400) 'Use timer 0 for pulse width
 TWAIT
 WAIT=1000 'wait 1 second
 LOOP
END
'****Interrupt Subroutine
C1
OUT(1)=1 'set output high again
RETURNI

Stop Motion if Voltage Drops
The Voltage, Current and Temperature of a SmartMotor are always known
and can be used within a program to react to changes. In this program, the
SmartMotor begins a move and then stops motion if the voltage falls below 18.5
volts.

EIGN(W,0) 'Disable hardware limits
ZS 'Clear faults
MDS 'Sine Mode Commutation
ADT=100 'Set maximum acceleration

Appendix E: Example Programs

132

VT=100000 'Set maximum velocity
PT=1000000 'Set fi nal position
MP 'Set Position Mode
G 'Start motion
WHILE Bt 'Loop while motion continues
 IF UJA<18500 'If voltage is below 18.5 Volts
 OFF 'Turn motor off
 ENDIF
LOOP 'Loop back to WHILE
END 'Obligatory END

Appendix E: Example Programs

133

Appendix F: Status Words

Status Word: 0 SW(0) Primary Fault/Status Indicator

Bit Value Type Clear Description

0 1 Indicator Drive ready – no faults exist
and enough bus voltage

1 2 Indicator Bo Motor is off
2 4 Indicator Bt Trajectory in progress

3 8 Fault
Servo bus voltage fault, set on
regen fault, or while running
with low bus.

4 16 Historical Ba Za Peak over-current occurred

5 32 Fault Bh

Excessive temperature,
requires 5 deg C below TH
setting and user clear of this
bit.

6 64 Fault Be Ze Excessive position error
7 128 Fault Bv Zv Velocity limit
8 256 Indicator Real-time temperature limit

9 512 Fault First derivative (DE/Dt) of
position error over limit

10 1024 Indicator Hardware right (+) over travel
limit enabled

11 2048 Indicator Hardware left (-) over travel
limit enabled

12 4096 Historical Br Zs Right (+) over travel limit
13 8192 Historical Bl Zl Left (-) over travel limit

14 16384 Indicator Bp Right (+) over travel limit
active

15 32768 Indicator Bm Left (-) over travel limit active

134

Appendix F: Status Words

Status Word: 1 SW(1) Index Registration and Software Travel Limits

Bit Value Type Description

0 1 Indicator Arming Bit for Rise Capture of
Encoder 0

1 2 Indicator Arming Bit for Fall Capture of
Encoder 0

2 4 Historical Bi(0) Rising Edge Capture on
Encoder 0

3 8 Historical Bj(0) Falling Edge Capture on
Encoder 0

4 16 Indicator Arming Bit for Rise Capture of
Encoder 1

5 32 Indicator Arming Bit for Fall Capture of
Encoder 1

6 64 Historical Bi(1) Rising Edge Capture on
Encoder 1

7 128 Historical Bj(1) Falling Edge Capture on
Encoder 1

8 256 Indicator Bx(0) Capture Input State 0
9 512 Indicator Bx(1) Capture Input State 1

10 1024 Indicator Software Over Trave Limits
Enabled

11 2048 Indicator

Software Over Trave Limit
Mode: [0: Don't Stop] [1:
Fault will occure MTB issued,
Default]

12 4096 Historical Brs Zrs Software Positive Over Travel
Limit Occurred

13 8192 Historical Bls Zls Software Negative Over
Travel Limit Occurred

14 16384 Indicator Bps Software Positive Over Travel
Limit Active

15 32768 Indicator Bms Software Negative Over
Travel Limit Active

135

Appendix F: Status Words

Status Word: 2 SW(2) Communications, Program and Memory

Bit Value Type Description

0 1 Indicator
Com Channel 0 (RS-232)
General Error; Use RCHN(0)
to get full status

1 2 Indicator
Com Channel 1 (RS-485)
General Error; Use RCHN(1)
to get full status

2 4 Indicator Reserved
3 8 Indicator Reserved
4 16 Indicator CAN Bus Error; Use RCAN
5 32 Indicator Reserved
6 64 Indicator Ethernet Error
7 128 Indicator I2C Running
8 256 Indicator Reserved

9 512 Indicator Animatics Data Block
Checksum Error

10 1024 Indicator Program RUNNING !

11 2048 Indicator Trace In Progress (Currently
in Alpha Test)

12 4096 Historical

EEPROM Write Buffer
Overfl ow, Last Write to
EEPROM exceeded buffer
and was denied

13 8192 Indicator EEPROM Busy (Write In
Progress)

14 16384 Historical Bs Zs
Command Syntax Error
NOTE !!!! See ERRC
Command Errors Info

15 32768 Indicator Bk
Main Program Checksum
Error: Program is Corrupt and
cannot run

136

Status Word: 3 SW(3) PID State, Brake, Move Generation Indicators

Bit Value Type Description

0 1 Historical Position Error has Exceeded
Software Limt

1 2 Indicator Torque Saturation; Drive is
Running at 100% PWM

2 4 Indicator Voltage Saturation; Max Bus
Voltage!

3 8 Historical Bw Zw
Wrap around Occurred;
Position wrapped through +/-
2^31

4 16 Indicator KG (Gravitational Offset Gain)
enabled

5 32 Indicator Shaft Direction
6 64 Indicator PID Torque Direction
7 128 Historical ZS I/O Fault Latch
8 256 Indicator Relative Move
9 512

10 1024
11 2048 Indicator Modulo Rollover
12 4096 Indicator Brake Asserted

13 8192 Indicator
Brake OK, Is Internally present
or confi gured to an external I/O
point

14 16384 Indicator "G" command has been
confi gured to an Input

15 32768 Indicator Velocity Target Reached

Appendix F: Status Words

137

Appendix F: Status Words

Status Word: 4 SW(4) Interrupt Timers

Bit Value Type Description

0 1 Indicator Timer 0 Running: (Not timed
out yet)

1 2 Indicator Timer 1 Running: (Not timed
out yet)

2 4 Indicator Timer 2 Running: (Not timed
out yet)

3 8 Indicator Timer 3 Running: (Not timed
out yet)

4 16
5 32
6 64
7 128
8 256
9 512

10 1024
11 2048
12 4096
13 8192
14 16384
15 32768

138

Appendix F: Status Words

Status Word: 5 SW(5) Interrupt Status Indicators

Bit Value Type Description
0 1 Indicator Interrupt 0 Enabled
1 2 Indicator Interrupt 1 Enabled
2 4 Indicator Interrupt 2 Enabled
3 8 Indicator Interrupt 3 Enabled
4 16 Indicator Interrupt 4 Enabled
5 32 Indicator Interrupt 5 Enabled
6 64 Indicator Interrupt 6 Enabled
7 128 Indicator Interrupt 7 Enabled
8 256
9 512

10 1024
11 2048
12 4096
13 8192
14 16384

15 32768 Indicator Interrupt Event Scanner
Enabled

139

Appendix F: Status Words

Status Word: 6 SW(6) Drive Modes

Bit Value Type Description

0 1 Indicator

Running Standard
Trapezoidal Mode
(Direct From Hardware
Commutation)

1 2 Indicator

Running Enhanced
Trapezoidal Mode
(Encoder Position
Emulated Commutation)

2 4 Indicator Running Sinusoidal
Commutation

3 8 Indicator Sine current mode
4 16
5 32
6 64
7 128

8 256 Indicator

Commutation Calibration
OK (should =1 after fi rst
detection of internal index
mark)

9 512 Indicator
TOB (Trajectory
Overshoot Braking)
Enabled

10 1024
Commutation Is Inverted
(MINV(1) has been is-
sued)

11 2048 MTB (Mode Torque
Brake) is active

12 4096 Indicator Encoder battery fault
13 8192 Indicator Low bus indicator
14 16384 Historical High bus latched ind.
15 32768 Indicator Shunt Active

140

Appendix F: Status Words

Status Word 7: SW(7) - Multiple Trajectory Support

Bit Value Type Description
0 1 Indicator Trajectory 1 In Progress
1 2 Indicator Trajectory 1 Accel Phase
2 4 Indicator Trajectory 1 Slew Phase
3 8 Indicator Trajectory 1 Decel Phase
4 16 Indicator Reserved
5 32 Indicator Reserved
6 64 Indicator Reserved
7 128 Indicator Reserved
8 256 Indicator Trajectory 2 in Progress
9 512 Indicator Ascend Segment

10 1024 Indicator Slew Segment
11 2048 Indicator Descend Segment
12 4096 Indicator Dwell Segment
13 8192 Indicator Reserved
14 16384 Indicator Reserved
15 32768 Indicator TSWAIT

141

Appendix F: Status Words

Status Word 8: SW(8) – Cam Support

Bit Value Type Description
0 1 Indicator Cam User Bit 0
1 2 Indicator Cam User Bit 1
2 4 Indicator Cam User Bit 2
3 8 Indicator Cam User Bit 3
4 16 Indicator Cam User Bit 4
5 32 Indicator Cam User Bit 5
6 64 Indicator Cam Segment Mode 0
7 128 Indicator Cam Segment Mode 1
8 256 Indicator Interpolation User Bit 0
9 512 Indicator Interpolation User Bit 1

10 1024 Indicator Interpolation User Bit 2
11 2048 Indicator Interpolation User Bit 3
12 4096 Indicator Interpolation User Bit 4
13 8192 Indicator Interpolation User Bit 5
14 16384 Indicator Interpolation Seg Mode 0
15 32768 Indicator Interpolation Seg mode 1

142

Appendix F: Status Words

Status Word 12: SW(12) – User Bits Word 0

Bit Value Type Description
0 1 Set/Reset User Bit 0
1 2 Set/Reset User Bit 1
2 4 Set/Reset User Bit 2
3 8 Set/Reset User Bit 3
4 16 Set/Reset User Bit 4
5 32 Set/Reset User Bit 5
6 64 Set/Reset User Bit 6
7 128 Set/Reset User Bit 7
8 256 Set/Reset User Bit 8
9 512 Set/Reset User Bit 9

10 1024 Set/Reset User Bit 10
11 2048 Set/Reset User Bit 11
12 4096 Set/Reset User Bit 12
13 8192 Set/Reset User Bit 13
14 16384 Set/Reset User Bit 14
15 32768 Set/Reset User Bit 15

Status Word 13: SW(13) – User Bits Word 1
Bit Value Type Description
0 1 Set/Reset User Bit 16
1 2 Set/Reset User Bit 17
2 4 Set/Reset User Bit 18
3 8 Set/Reset User Bit 19
4 16 Set/Reset User Bit 20
5 32 Set/Reset User Bit 21
6 64 Set/Reset User Bit 22
7 128 Set/Reset User Bit 23
8 256 Set/Reset User Bit 24
9 512 Set/Reset User Bit 25

10 1024 Set/Reset User Bit 26
11 2048 Set/Reset User Bit 27
12 4096 Set/Reset User Bit 28
13 8192 Set/Reset User Bit 29
14 16384 Set/Reset User Bit 30
15 32768 Set/Reset User Bit 31

143

Status Word: 16 SW(16) On Board Local I/O Status

Bit Value I/O Pin Port Description
0 1 0 1 A
1 2 1 2 B
2 4 2 3 C
3 8 3 4 D
4 16 4 5 E
5 32 5 6 F
6 64 6 7 G

7 128 7 - -
Internal I/O point may
be set for purposes of
triggering Interrupts

8 256
9 512

10 1024
11 2048
12 4096
13 8192
14 16384
15 32768

Appendix F: Status Words

144

Status Word: 17 SW(17) Expanded I/O Status

Bit Value I/O Pin Description
0 1 16 1
1 2 17 2
2 4 18 3
3 8 19 4
4 16 20 5
5 32 21 6
6 64 22 7
7 128 23 8
8 256 24 9
9 512 25 10

10 1024
11 2048
12 4096
13 8192
14 16384
15 32768

Appendix F: Status Words

